IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i6d10.1007_s40745-023-00503-2.html
   My bibliography  Save this article

Role of Artificial Intelligence and Deep Learning in Skin Disease Prediction: A Systematic Review and Meta-analysis

Author

Listed:
  • V. Auxilia Osvin Nancy

    (SRM Institute of Science and Technology)

  • P. Prabhavathy

    (SRM Institute of Science and Technology)

  • Meenakshi S. Arya

    (IOWA State University)

Abstract

Skin is a most essential and extraordinary part of the human structure. Exposure to chemicals such as nitrates, sunlight, arsenic, and UV rays due to pollution and depletion of the ozone layer is causing various skin diseases to spread rapidly. Digital healthcare offers many opportunities to reduce time, and human error, and improve clinical outcomes. However, the automatic recognition of skin disease is a major challenge due to high visual similarity between different skin diseases, low contrast, and large inter variation. Early detection of skin cancer can prevent death. Thus, Artificial intelligence (AI) and Machine Learning (ML) helps the physicians to improve clinical judgment or change manual perception. For skin cancer diagnostics, the ML/AI algorithm can outperform or match professional dermatologists in multiple studies. Different pre-trained architectures such as ResNet152, AlexNet, VGGNet, etc. are used for fusing different skin disease features such as texture, color, etc. and they are also utilized for conducting segmentation tasks. The variations in reflection, lesion size, shape, illumination, etc. often make automatic skin disease classification a complex task. ISIC 2019 and HAM 10000 are the widely used public datasets for skin disease prediction. More technical paper on skin cancer diagnosis is compared in this study. This report examines the majority of technical papers published between 2018 and October 2022 in order to appreciate current trends in the disciplines of skin cancer prediction. A study that combined clinical patient data with deep learning models (DL) increased the accuracy of predicting skin cancer. This article presents a visually attractive and well-organized summary of the current study findings.

Suggested Citation

  • V. Auxilia Osvin Nancy & P. Prabhavathy & Meenakshi S. Arya, 2024. "Role of Artificial Intelligence and Deep Learning in Skin Disease Prediction: A Systematic Review and Meta-analysis," Annals of Data Science, Springer, vol. 11(6), pages 2109-2139, December.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:6:d:10.1007_s40745-023-00503-2
    DOI: 10.1007/s40745-023-00503-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00503-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00503-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cihan Akyel & Nursal Arıcı, 2022. "LinkNet-B7: Noise Removal and Lesion Segmentation in Images of Skin Cancer," Mathematics, MDPI, vol. 10(5), pages 1-15, February.
    2. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    2. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    3. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    4. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    5. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    6. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    7. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    8. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    9. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    10. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    11. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    12. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    13. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    14. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.
    15. Mahabuba Akhter & Syed Md. Minhaz Hossain & Rizma Sijana Nigar & Srabanti Paul & Khaleque Md. Aashiq Kamal & Anik Sen & Iqbal H. Sarker, 2024. "COVID-19 Fake News Detection using Deep Learning Model," Annals of Data Science, Springer, vol. 11(6), pages 2167-2198, December.
    16. Muhammad Tahir & Sufyan Ali & Ayesha Sohail & Ying Zhang & Xiaohua Jin, 2024. "Unlocking Online Insights: LSTM Exploration and Transfer Learning Prospects," Annals of Data Science, Springer, vol. 11(4), pages 1421-1434, August.
    17. Junjie Hou & Yuqi Zhang & Duo Su, 2024. "Unified Image Harmonization with Region Augmented Attention Normalization," Annals of Data Science, Springer, vol. 11(5), pages 1865-1886, October.
    18. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    19. Bo Li & Guangle Du, 2024. "Reaction Function for Financial Market Reacting to Events or Information," Annals of Data Science, Springer, vol. 11(4), pages 1265-1290, August.
    20. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.

    More about this item

    Keywords

    CNN; Deep learning; Skin cancer; HAM10000; ISIC2019; Augmentation;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:6:d:10.1007_s40745-023-00503-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.