IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i4d10.1007_s40745-023-00471-7.html
   My bibliography  Save this article

LADDERS: Log Based Anomaly Detection and Diagnosis for Enterprise Systems

Author

Listed:
  • Sakib A. Mondal

    (Walmart)

  • Prashanth Rv

    (Walmart)

  • Sagar Rao

    (Walmart)

  • Arun Menon

    (Walmart)

Abstract

Enterprise software can fail due to not only malfunction of application servers, but also due to performance degradation or non-availability of other servers or middle layers. Consequently, valuable time and resources are wasted in trying to identify the root cause of software failures. To address this, we have developed a framework called LADDERS. In LADDERS, anomalous incidents are detected from log events generated by various systems and KPIs (Key Performance Indicators) through an ensemble of supervised and unsupervised models. Without transaction identifiers, it is not possible to relate various events from different systems. LADDERS implements Recursive Parallel Causal Discovery (RPCD) to establish causal relationships among log events. The framework builds coresets using BICO to manage high volumes of log data during training and inferencing. An anomaly can cause a number of anomalies throughout the systems. LADDERS makes use of RPCD again to discover causal relationships among these anomalous events. Probable root causes are revealed from the causal graph and anomaly rating of events using a k-shortest path algorithm. We evaluated LADDERS using live logs from an enterprise system. The results demonstrate its effectiveness and efficiency for anomaly detection.

Suggested Citation

  • Sakib A. Mondal & Prashanth Rv & Sagar Rao & Arun Menon, 2024. "LADDERS: Log Based Anomaly Detection and Diagnosis for Enterprise Systems," Annals of Data Science, Springer, vol. 11(4), pages 1165-1183, August.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-023-00471-7
    DOI: 10.1007/s40745-023-00471-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00471-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00471-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    2. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reetika Sarkar & Sithija Manage & Xiaoli Gao, 2024. "Stable Variable Selection for High-Dimensional Genomic Data with Strong Correlations," Annals of Data Science, Springer, vol. 11(4), pages 1139-1164, August.
    2. Tarakashar Das & Sabrina Mobassirin & Syed Md. Minhaz Hossain & Aka Das & Anik Sen & Khaleque Md. Aashiq Kamal & Kaushik Deb, 2024. "Patient Questionnaires Based Parkinson’s Disease Classification Using Artificial Neural Network," Annals of Data Science, Springer, vol. 11(5), pages 1821-1864, October.
    3. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    4. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    5. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    6. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    7. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    8. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    9. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    10. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    11. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    12. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    13. Bo Li & Guangle Du, 2024. "Reaction Function for Financial Market Reacting to Events or Information," Annals of Data Science, Springer, vol. 11(4), pages 1265-1290, August.
    14. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    15. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    16. Showkat Ahmad Lone & Intekhab Alam & Ahmadur Rahman, 2023. "Statistical Analysis Under Geometric Process in Accelerated Life Testing Plans for Generalized Exponential Distribution," Annals of Data Science, Springer, vol. 10(6), pages 1653-1665, December.
    17. Yanke Bao & Ying Wang, 2022. "Factor Space: The New Science of Causal Relationship," Annals of Data Science, Springer, vol. 9(3), pages 555-570, June.
    18. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    19. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    20. Md. Zubair & MD. Asif Iqbal & Avijeet Shil & M. J. M. Chowdhury & Mohammad Ali Moni & Iqbal H. Sarker, 2024. "An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling," Annals of Data Science, Springer, vol. 11(5), pages 1525-1544, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-023-00471-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.