IDEAS home Printed from https://ideas.repec.org/a/spr/anresc/v64y2020i2d10.1007_s00168-019-00919-w.html
   My bibliography  Save this article

Testing for spatial group-wise heteroskedasticity in spatial autocorrelation regression models: Lagrange multiplier scan tests

Author

Listed:
  • Julie Le Gallo

    (Université de Bourgogne Franche-Comté)

  • Fernando A. López

    (Technical University of Cartagena)

  • Coro Chasco

    (Universidad Autónoma de Madrid
    Nebrija University)

Abstract

The aim of this paper is to develop a spatial group-wise heteroskedasticity test based on the scan approach, specifically developed for spatial autocorrelation regression models (spatial lag and spatial error models): the “scan-LM test.” Based on the Lagrange multiplier (LM) principle, its main advantage lies in its comparative ease of implementation as it is not necessary to obtain the maximum likelihood estimations for the alternative hypothesis. Moreover, when rejecting the null hypothesis, this test identifies the shape and size of the spatial clusters with different residual variance, a feature which proves very useful for specification search of the regression model. Another important benefit of the scan-LM test is that it does not require the specification of a spatial weights matrix. An extensive Monte Carlo simulation confirms the good properties of the scan-LM test in terms of size and power. This test is also robust in the presence of non-normality and other forms of a spatial heteroskedasticity. We finally propose an application on housing prices in the agglomeration of Madrid for a specific submarket: the attics.

Suggested Citation

  • Julie Le Gallo & Fernando A. López & Coro Chasco, 2020. "Testing for spatial group-wise heteroskedasticity in spatial autocorrelation regression models: Lagrange multiplier scan tests," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 287-312, April.
  • Handle: RePEc:spr:anresc:v:64:y:2020:i:2:d:10.1007_s00168-019-00919-w
    DOI: 10.1007/s00168-019-00919-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00168-019-00919-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00168-019-00919-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florax, Raymond J. G. M. & Folmer, Hendrik & Rey, Sergio J., 2003. "Specification searches in spatial econometrics: the relevance of Hendry's methodology," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 557-579, September.
    2. Coro Chasco & Julie Le Gallo, 2013. "The Impact of Objective and Subjective Measures of Air Quality and Noise on House Prices: A Multilevel Approach for Downtown Madrid," Economic Geography, Taylor & Francis Journals, vol. 89(2), pages 127-148, April.
    3. Peter M. Robinson & Francesca Rossi, 2014. "Improved Lagrange multiplier tests in spatial autoregressions," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 139-164, February.
    4. Benjamin Born & Jörg Breitung, 2011. "Simple regression‐based tests for spatial dependence," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 330-342, July.
    5. Sandy Dall'erba & Julie Le Gallo, 2008. "Regional convergence and the impact of European structural funds over 1989–1999: A spatial econometric analysis," Papers in Regional Science, Wiley Blackwell, vol. 87(2), pages 219-244, June.
    6. Manfred Fischer & Claudia Stirböck, 2006. "Pan-European regional income growth and club-convergence," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(4), pages 693-721, December.
    7. Harry H. Kelejian & Dennis P. Robinson, 2004. "The Influence of Spatially Correlated Heteroskedasticity on Tests for Spatial Correlation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 4, pages 79-97, Springer.
    8. Cheshire, Paul & Sheppard, Stephen, 1998. "Estimating the Demand for Housing, Land, and Neighbourhood Characteristics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 60(3), pages 357-382, August.
    9. M. Fletcher & P. Gallimore & J. Mangan, 2000. "Heteroscedasticity in hedonic house price models," Journal of Property Research, Taylor & Francis Journals, vol. 17(2), pages 93-108, January.
    10. Zhenkui Zhang & Renato Assunção & Martin Kulldorff, 2010. "Spatial Scan Statistics Adjusted for Multiple Clusters," Journal of Probability and Statistics, Hindawi, vol. 2010, pages 1-11, August.
    11. Fernando A. López & Coro Chasco & Julie Le Gallo, 2015. "Exploring scan methods to test spatial structure with an application to housing prices in Madrid," Papers in Regional Science, Wiley Blackwell, vol. 94(2), pages 317-346, June.
    12. Chasco, Coro & Le Gallo, Julie & López, Fernando A., 2018. "A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madrid," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 226-238.
    13. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    14. Kelejian, Harry H. & Robinson, Dennis P., 1998. "A suggested test for spatial autocorrelation and/or heteroskedasticity and corresponding Monte Carlo results," Regional Science and Urban Economics, Elsevier, vol. 28(4), pages 389-417, July.
    15. J. Ord & Arthur Getis, 2012. "Local spatial heteroscedasticity (LOSH)," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(2), pages 529-539, April.
    16. Burridge, Peter, 2011. "A research agenda on general-to-specific spatial model search," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 21, pages 71-90.
    17. Mur, Jesús & Angulo, Ana, 2009. "Model selection strategies in a spatial setting: Some additional results," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 200-213, March.
    18. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chasco, Coro & Le Gallo, Julie & López, Fernando A., 2018. "A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madrid," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 226-238.
    2. Bera Anil K. & Doğan Osman & Taşpınar Süleyman, 2019. "Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-33, January.
    3. Francisco J. Delgado & Santiago Lago-Peñas & Matías Mayor, 2015. "On The Determinants Of Local Tax Rates: New Evidence From Spain," Contemporary Economic Policy, Western Economic Association International, vol. 33(2), pages 351-368, April.
    4. Pede, Valerien O. & Florax, Raymond J.G.M. & Lambert, Dayton M., 2014. "Spatial econometric STAR models: Lagrange multiplier tests, Monte Carlo simulations and an empirical application," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 118-128.
    5. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.
    6. Andree Ehlert & Dirk Oberschachtsiek, 2014. "Does managed care reduce health care expenditure? Evidence from spatial panel data," International Journal of Health Economics and Management, Springer, vol. 14(3), pages 207-227, September.
    7. Fernando López & Jesús Mur & Ana Angulo, 2014. "Spatial model selection strategies in a SUR framework. The case of regional productivity in EU," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 197-220, August.
    8. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    9. Rafa Madariaga & Joan Martori & Ramon Oller, 2014. "Income, distance and amenities. An empirical analysis," Empirical Economics, Springer, vol. 47(3), pages 1129-1146, November.
    10. Shanaka Herath & Johanna Choumert & Gunther Maier, 2015. "The value of the greenbelt in Vienna: a spatial hedonic analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 349-374, March.
    11. Jan Paul Baginski & Christoph Weber, "undated". "Coherent estimations for residential photovoltaic uptake in Germany including spatial spillover effects," EWL Working Papers 1902, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    12. J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
    13. Jianhuan Huang & Jiejin Xia, 2016. "Regional Competition, Heterogeneous Factors and Pollution Intensity in China: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 8(2), pages 1-26, February.
    14. Faroek Lazrak & Peter Nijkamp & Piet Rietveld & Jan Rouwendal, 2014. "The market value of cultural heritage in urban areas: an application of spatial hedonic pricing," Journal of Geographical Systems, Springer, vol. 16(1), pages 89-114, January.
    15. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    16. Angulo, Ana M. & Mur, Jesús, 2011. "The Likelihood Ratio Test of Common Factors under Non-Ideal Conditions," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 21, pages 37-52.
    17. Zhenlin Yang, 2018. "Bootstrap LM tests for higher-order spatial effects in spatial linear regression models," Empirical Economics, Springer, vol. 55(1), pages 35-68, August.
    18. Ji Uk Kim, 2020. "Technology diffusion, absorptive capacity, and income convergence for Asian developing countries: a dynamic spatial panel approach," Empirical Economics, Springer, vol. 59(2), pages 569-598, August.
    19. Suárez Cano, Patricia & Mayor Fernández, Matías & Cueto Iglesias, Begoña, 2012. "La eficiencia de los servicios públicos de empleo en España en un escenario descentralizado: un análisis desde la perspectiva de la oferta/Efficiency of Public Employment Services in Spain in a Decent," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 30, pages 757(22)-757, Agosto.
    20. Sheila Chapman & Stefania Cosci & Loredana Mirra, 2012. "Income dynamics in an enlarged Europe: the role of capital regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 663-693, June.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:anresc:v:64:y:2020:i:2:d:10.1007_s00168-019-00919-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.