IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v342y2024i1d10.1007_s10479-023-05354-x.html
   My bibliography  Save this article

Method for travel time prediction in emerging markets based on anonymous truck GPS data

Author

Listed:
  • Carlos Mario Pérez-González

    (IMT-National Laboratory For Transportation Systems and Logistics)

  • Jaime Mora-Vargas

    (School of Engineering and Science)

  • Jared Piña-Barcenas

    (IMT-National Laboratory For Transportation Systems and Logistics)

  • Miguel Gaston Cedillo-Campos

    (IMT-National Laboratory For Transportation Systems and Logistics)

Abstract

Travel time pattern analysis and prediction are essential for achieving better logistics performance in the supply chain. Solid theoretical assumptions based on reliable historical information must be established to analyze travel time; however, access to such information in emerging markets is challenging. Neural networks can learn historical data patterns and are proposed in this study as an artificial intelligence tool to calculate and forecast travel times to develop reliability measurements. Thus, the following measures and indices were used: the percentiles of travel time and the mean, amplitude, skew, buffer, and indices of fluidity and planning time regarding the mean. The obtained data were compared, and a small variation was found between the control and prediction sets. Furthermore, the model did not generate large prediction errors based on the root-mean-square error (RMSE) values. According to the mean difference test results, the hypothesis that the real and forecasted datasets have the same mean was not rejected. Overall, the possibility of predicting travel times using neural networks allows modeling the transportation segments where information is unavailable, thus, preserving travel data anonymity. Finally, helpful conclusions and a proposal for future research are presented.

Suggested Citation

  • Carlos Mario Pérez-González & Jaime Mora-Vargas & Jared Piña-Barcenas & Miguel Gaston Cedillo-Campos, 2024. "Method for travel time prediction in emerging markets based on anonymous truck GPS data," Annals of Operations Research, Springer, vol. 342(1), pages 585-620, November.
  • Handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-023-05354-x
    DOI: 10.1007/s10479-023-05354-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05354-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05354-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    2. Cedillo-Campos, Miguel Gastón & Pérez-González, Carlos Mario & Piña-Barcena, Jared & Moreno-Quintero, Eric, 2019. "Measurement of travel time reliability of road transportation using GPS data: A freight fluidity approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 240-288.
    3. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    4. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.
    5. van Lint, J.W.C. & van Zuylen, Henk J. & Tu, H., 2008. "Travel time unreliability on freeways: Why measures based on variance tell only half the story," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 258-277, January.
    6. Ghassane Benrhmach & Khalil Namir & Abdelwahed Namir & Jamal Bouyaghroumni, 2020. "Nonlinear Autoregressive Neural Network and Extended Kalman Filters for Prediction of Financial Time Series," Journal of Applied Mathematics, Hindawi, vol. 2020, pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoqi Zang & Richard Batley & Xiangdong Xu & David Z. W. Wang, 2022. "On the value of distribution tail in the valuation of travel time variability," Papers 2207.06293, arXiv.org, revised Dec 2023.
    2. Cheng, Qixiu & Liu, Zhiyuan & Lu, Jiawei & List, George & Liu, Pan & Zhou, Xuesong Simon, 2024. "Using frequency domain analysis to elucidate travel time reliability along congested freeway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    3. Jie Liu & Paul Schonfeld & Jinqu Chen & Yong Yin & Qiyuan Peng, 2021. "Perceived Trip Time Reliability and Its Cost in a Rail Transit Network," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    4. Zang, Zhaoqi & Xu, Xiangdong & Yang, Chao & Chen, Anthony, 2018. "A closed-form estimation of the travel time percentile function for characterizing travel time reliability," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 228-247.
    5. Emily K. M. Moylan & Michiel C. J. Bliemer & Taha Hossein Rashidi, 2022. "Travellers’ perceptions of travel time reliability in the presence of rare events," Transportation, Springer, vol. 49(4), pages 1157-1181, August.
    6. Zang, Zhaoqi & Batley, Richard & Xu, Xiangdong & Wang, David Z.W., 2024. "On the value of distribution tail in the valuation of travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    7. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    8. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    9. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    10. Livio Cricelli & Michele Grimaldi & Silvia Vermicelli, 2022. "Crowdsourcing and open innovation: a systematic literature review, an integrated framework and a research agenda," Review of Managerial Science, Springer, vol. 16(5), pages 1269-1310, July.
    11. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    12. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    13. Zoltán Lakner & Brigitta Plasek & Gyula Kasza & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Towards Understanding the Food Consumer Behavior–Food Safety–Sustainability Triangle: A Bibliometric Approach," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    14. Santana, Monica & Cobo, Manuel J., 2020. "What is the future of work? A science mapping analysis," European Management Journal, Elsevier, vol. 38(6), pages 846-862.
    15. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    16. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    17. Stefanie Peer & Carl Koopmans & Erik T. Verhoef, 2010. "Predicting Travel Time Variability for Cost-Benefit Analysis," Tinbergen Institute Discussion Papers 10-071/3, Tinbergen Institute.
    18. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    19. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    20. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-023-05354-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.