IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/5057801.html
   My bibliography  Save this article

Nonlinear Autoregressive Neural Network and Extended Kalman Filters for Prediction of Financial Time Series

Author

Listed:
  • Ghassane Benrhmach
  • Khalil Namir
  • Abdelwahed Namir
  • Jamal Bouyaghroumni

Abstract

Time series analysis and prediction are major scientific challenges that find their applications in fields as diverse as finance, biology, economics, meteorology, and so on. Obtaining the method with the least prediction error is one of the difficult problems of financial market and investment analysts. State space modelling is an efficient and flexible method for statistical inference of a broad class of time series and other data. The neural network is an important tool for analyzing time series especially when it is nonlinear and nonstationary. Essential tools for the study of Box-Jenkins methodology, neural networks, and extended Kalman filter were put together. We examine the use of the nonlinear autoregressive neural network method as a prediction technique for financial time series and the application of the extended Kalman filter algorithm to improve the accuracy of the model. As application on a real example, we are analyzing the time series of the daily price of steel over a 790-day period for establishing the superiority of this method over other existing methods. The simulation results using MATLAB and R software show that the model is capable of producing a reasonable accuracy.

Suggested Citation

  • Ghassane Benrhmach & Khalil Namir & Abdelwahed Namir & Jamal Bouyaghroumni, 2020. "Nonlinear Autoregressive Neural Network and Extended Kalman Filters for Prediction of Financial Time Series," Journal of Applied Mathematics, Hindawi, vol. 2020, pages 1-6, April.
  • Handle: RePEc:hin:jnljam:5057801
    DOI: 10.1155/2020/5057801
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2020/5057801.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2020/5057801.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5057801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    2. Carlos Mario Pérez-González & Jaime Mora-Vargas & Jared Piña-Barcenas & Miguel Gaston Cedillo-Campos, 2024. "Method for travel time prediction in emerging markets based on anonymous truck GPS data," Annals of Operations Research, Springer, vol. 342(1), pages 585-620, November.
    3. Zakaria Boulanouar & Ghassane Benrhmach & Rihab Grassa & Sonia Abdennadher & Mariam Aldhaheri, 2024. "Exploring the predictive power of artificial neural networks in linking global Islamic indices with a local Islamic index," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:5057801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.