IDEAS home Printed from https://ideas.repec.org/a/taf/oabmxx/v10y2023i1p2163560.html
   My bibliography  Save this article

The integration of forensic accounting and big data technology frameworks for internal fraud mitigation in the banking industry

Author

Listed:
  • Oluwatoyin Esther Akinbowale
  • Polly Mashigo
  • Mulatu Fekadu Zerihun

Abstract

The purpose of this study is to investigate the integration of forensic accounting and big data technology frameworks in relation to the mitigation of internal fraud risk in the banking industry. This study employed an explanatory research design involving the use of simulated data to mirror the situation in the banking industry. To this end, the big data analytical approach considered is machine learning that involves a neural network with two-layer feed forward, one hidden layer and five hidden neuron layers created to detect the presence of fraud and classify them into two, viz.: fraudulent and non-fraudulent activities. Both the input and output target samples are automatically divided into training, validation, and test datasets, while the confusion matrix is employed to visualise the percentages of correct and incorrect classifications. Furthermore, the clustering of the fraud indicators was also carried out to group them based on their similarities. The results obtained demonstrate the feasibility of neural networks in classifying internal fraud into three levels of risks and fraud detection. This is evidenced in the percentage of correct classification (95%) and misclassification (5%) obtained from the confusion matrix. The model also demonstrates the feasibility of clustering the potential red flags of internal fraud. This study provides an understanding into the attributes of internal fraud and a practical guided approach to implement an integrated forensic accounting and big data technology framework for internal fraud mitigation. The forensic accountant should ensure that the machine learning models are regularly updated with new datasets for automatic classification and clustering analysis. There is still scanty information regarding the integration of forensic accounting and big data technology for mitigation of internal fraud risk in the banking industry. Hence, it is envisaged that this study will contribute to the method, theory and practise of internal fraud mitigation.

Suggested Citation

  • Oluwatoyin Esther Akinbowale & Polly Mashigo & Mulatu Fekadu Zerihun, 2023. "The integration of forensic accounting and big data technology frameworks for internal fraud mitigation in the banking industry," Cogent Business & Management, Taylor & Francis Journals, vol. 10(1), pages 2163560-216, December.
  • Handle: RePEc:taf:oabmxx:v:10:y:2023:i:1:p:2163560
    DOI: 10.1080/23311975.2022.2163560
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23311975.2022.2163560
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23311975.2022.2163560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean Robert Kala Kamdjoug & Hyacinthe Djanan Sando & Jules Raymond Kala & Arielle Ornela Ndassi Teutio & Sunil Tiwari & Samuel Fosso Wamba, 2024. "Data analytics-based auditing: a case study of fraud detection in the banking context," Annals of Operations Research, Springer, vol. 340(2), pages 1161-1188, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oabmxx:v:10:y:2023:i:1:p:2163560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://cogentoa.tandfonline.com/OABM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.