IDEAS home Printed from https://ideas.repec.org/p/aso/wpaper/wp0004.html
   My bibliography  Save this paper

The contribution of industrial robots to labor productivity growth and economic convergence: A production frontier approach

Author

Listed:
  • Eder, A.

    (Institute for Industrial Research, Mittersteig 10/4, 1050 Vienna, Austria; University of Natural Resources and Life Sciences, Department of Economics and Social Sciences, Institute for Sustainable Economic Development, Feistmantelstrasse 4, 1180, Vienna, Austria)

  • Koller, W.

    (Institute for Industrial Research, Mittersteig 10/4, 1050 Vienna, Austria)

  • Mahlberg, B.

    (Institute for Industrial Research, Mittersteig 10/4, 1050 Vienna, Austria; Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria)

Abstract

This paper investigates the contribution of industrial robots to labor productivity growth and the process of economic convergence in 19 developed and 17 emerging countries in the period 1999 to 2019. To answer our research questions, we extend the non-parametric production frontier framework by considering industrial robots as a separate production factor. Production frontiers and distances to the frontiers are estimated by Data Envelopment Analysis, a method based on linear programming models. Considerable contributions of robotization to labor productivity growth are mainly found in emerging countries and are rather modest in most developed countries. In the period 2009 to 2019 robot capital deepening as a source of productivity growth has gained in importance in emerging countries but not in developed countries. Within the period 1999 to 2019 we find some evidence of i) unconditional β-convergence, ii) a reduction in the dispersion of productivity levels across economies (σ- convergence) and iii) a depolarization (shift from bimodal to unimodal distribution) of the labor productivity distribution. Non-robot physical capital deepening and robotization are the most important drivers of β-convergence. Robot capital deepening contributed to the depolarizationof the labor productivity distribution and to σ-convergence. Though, the effect of robot capital deepening on the entire shift of the labor productivity distribution between 1999 and 2019 is modest and dominated by other growth factors such as technological change and non-robot physical capital deepening.

Suggested Citation

  • Eder, A. & Koller, W. & Mahlberg, B., "undated". "The contribution of industrial robots to labor productivity growth and economic convergence: A production frontier approach," Working Papers 4, International Society for Efficiency and Productivity Analysis.
  • Handle: RePEc:aso:wpaper:wp0004
    as

    Download full text from publisher

    File URL: https://iseapa.org/documents/working_paper.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1091-1117.
    2. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    3. Rajiv D. Banker & Hsihui Chang & Zhiqiang Zheng, 2017. "On the use of super-efficiency procedures for ranking efficient units and identifying outliers," Annals of Operations Research, Springer, vol. 250(1), pages 21-35, March.
    4. Daniel Alonso Soto, 2020. "Technology and the future of work in emerging economies: What is different," OECD Social, Employment and Migration Working Papers 236, OECD Publishing.
    5. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    6. Carlos Mendez, 2020. "Convergence Clubs in Labor Productivity," SpringerBriefs in Economics, in: Convergence Clubs in Labor Productivity and its Proximate Sources, chapter 0, pages 33-39, Springer.
    7. Daron Acemoglu & Claire Lelarge & Pascual Restrepo, 2020. "Competing with Robots: Firm-Level Evidence from France," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 383-388, May.
    8. Bekhtiar, Karim & Bittschi, Benjamin & Sellner, Richard, 2021. "Robots at Work? Pitfalls of Industry Level Data," IHS Working Paper Series 30, Institute for Advanced Studies.
    9. Südekum, Jens & Dauth, Wolfgang & Findeisen, Sebastian & Woessner, Nicole, 2017. "German Robots – The Impact of Industrial Robots on Workers," CEPR Discussion Papers 12306, C.E.P.R. Discussion Papers.
    10. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    11. Cette, Gilbert & Devillard, Aurélien & Spiezia, Vincenzo, 2021. "The contribution of robots to productivity growth in 30 OECD countries over 1975–2019," Economics Letters, Elsevier, vol. 200(C).
    12. Andre Jungmittag & Annarosa Pesole, 2019. "The impact of robots on labour productivity: A panel data approach covering 9 industries and 12 countries," JRC Working Papers on Labour, Education and Technology 2019-08, Joint Research Centre.
    13. Krenz, Astrid & Prettner, Klaus & Strulik, Holger, 2021. "Robots, reshoring, and the lot of low-skilled workers," European Economic Review, Elsevier, vol. 136(C).
    14. Maria Portela & Emmanuel Thanassoulis, 2006. "Zero weights and non-zero slacks: Different solutions to the same problem," Annals of Operations Research, Springer, vol. 145(1), pages 129-147, July.
    15. Paul Johnson & Chris Papageorgiou, 2020. "What Remains of Cross-Country Convergence?," Journal of Economic Literature, American Economic Association, vol. 58(1), pages 129-175, March.
    16. Ray,Subhash C., 2012. "Data Envelopment Analysis," Cambridge Books, Cambridge University Press, number 9781107405264, September.
    17. Klump, Rainer & Jurkat, Anne & Schneider, Florian, 2021. "Tracking the rise of robots: A survey of the IFR database and its applications," MPRA Paper 107909, University Library of Munich, Germany.
    18. Lankisch, Clemens & Prettner, Klaus & Prskawetz, Alexia, 2019. "How can robots affect wage inequality?," Economic Modelling, Elsevier, vol. 81(C), pages 161-169.
    19. Ceccobelli, M. & Gitto, S. & Mancuso, P., 2012. "ICT capital and labour productivity growth: A non-parametric analysis of 14 OECD countries," Telecommunications Policy, Elsevier, vol. 36(4), pages 282-292.
    20. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    21. Prettner, Klaus, 2019. "A Note On The Implications Of Automation For Economic Growth And The Labor Share," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1294-1301, April.
    22. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    23. Alessandra Bonfiglioli & Rosario Crinò & Harald Fadinger & Gino Gancia, 2020. "Robot Imports and Firm-Level Outcomes," CRC TR 224 Discussion Paper Series crctr224_2020_243, University of Bonn and University of Mannheim, Germany.
    24. Oleg Badunenko & Diego Romero‐Ávila, 2013. "Financial Development And The Sources Of Growth And Convergence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(2), pages 629-663, May.
    25. Walheer, Barnabé, 2021. "Labor productivity and technology heterogeneity," Journal of Macroeconomics, Elsevier, vol. 68(C).
    26. Oleg Badunenko & Daniel Henderson & R. Russell, 2013. "Polarization of the worldwide distribution of productivity," Journal of Productivity Analysis, Springer, vol. 40(2), pages 153-171, October.
    27. Cooper, Julian, 1984. "The application of industrial robots in the Soviet engineering industry," Omega, Elsevier, vol. 12(3), pages 291-298.
    28. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    29. Daniel J. Henderson & Christopher F. Parmeter & R. Robert Russell, 2008. "Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 607-638.
    30. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2020. "Knowledge, robots and productivity in SMEs: Explaining the second digital wave," Journal of Business Research, Elsevier, vol. 108(C), pages 119-131.
    31. Los, Bart & Timmer, Marcel P., 2005. "The 'appropriate technology' explanation of productivity growth differentials: An empirical approach," Journal of Development Economics, Elsevier, vol. 77(2), pages 517-531, August.
    32. Hulten, Charles R, 1992. "Growth Accounting When Technical Change Is Embodied in Capital," American Economic Review, American Economic Association, vol. 82(4), pages 964-980, September.
    33. Quah, D., 1990. "Galton'S Fallacy And The Tests Of The Convergence Hypothesis," Working papers 552, Massachusetts Institute of Technology (MIT), Department of Economics.
    34. Rati Ram, 2021. "International convergence in population happiness: evidence from recent data," Applied Economics, Taylor & Francis Journals, vol. 53(34), pages 3984-3991, July.
    35. Oleg Badunenko & Daniel J. Henderson & Valentin Zelenyuk, 2008. "Technological Change and Transition: Relative Contributions to Worldwide Growth During the 1990s," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 461-492, August.
    36. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    37. Timmer,Marcel P. & Inklaar,Robert & O'Mahony,Mary & Ark,Bart van, 2013. "Economic Growth in Europe," Cambridge Books, Cambridge University Press, number 9781107412446, September.
    38. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    39. Hong Cheng & Ruixue Jia & Dandan Li & Hongbin Li, 2019. "The Rise of Robots in China," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 71-88, Spring.
    40. Antony, Jürgen & Klarl, Torben, 2020. "The implications of automation for economic growth when investment decisions are irreversible," Economics Letters, Elsevier, vol. 186(C).
    41. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    42. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    43. Yan Meng & Christopher F. Parmeter & Valentin Zelenyuk, 2023. "Is newer always better? A reinvestigation of productivity dynamics using updated PWT data," Journal of Productivity Analysis, Springer, vol. 59(1), pages 1-13, February.
    44. Danny Quah, 1997. "Empirics for Growth and Distribution," CEP Discussion Papers dp0324, Centre for Economic Performance, LSE.
    45. (Maggie) Fu, Xiaoqing & Bao, Qun & Xie, Hongjun & Fu, Xiaolan, 2021. "Diffusion of industrial robotics and inclusive growth: Labour market evidence from cross country data," Journal of Business Research, Elsevier, vol. 122(C), pages 670-684.
    46. Quah, Danny T., 1996. "Empirics for economic growth and convergence," European Economic Review, Elsevier, vol. 40(6), pages 1353-1375, June.
    47. DeCanio, Stephen J., 2016. "Robots and humans – complements or substitutes?," Journal of Macroeconomics, Elsevier, vol. 49(C), pages 280-291.
    48. Quah, Danny T, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," Journal of Economic Growth, Springer, vol. 2(1), pages 27-59, March.
    49. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    50. Charles R. Hulten, 1992. "Growth Accounting When Technical Change is Embodied in Capital," NBER Working Papers 3971, National Bureau of Economic Research, Inc.
    51. Niebel, Thomas, 2018. "ICT and economic growth – Comparing developing, emerging and developed countries," World Development, Elsevier, vol. 104(C), pages 197-211.
    52. Quah, Danny T, 1996. "Convergence Empirics across Economies with (Some) Capital Mobility," Journal of Economic Growth, Springer, vol. 1(1), pages 95-124, March.
    53. Carlos Mendez, 2020. "Convergence Clubs in Labor Productivity and its Proximate Sources," SpringerBriefs in Economics, Springer, number 978-981-15-8629-3, June.
    54. Andre Jungmittag, 2021. "Robotisation of the manufacturing industries in the EU: Convergence or divergence?," The Journal of Technology Transfer, Springer, vol. 46(5), pages 1269-1290, October.
    55. Diewert, W E, 1980. "Capital and the Theory of Productivity Measurement," American Economic Review, American Economic Association, vol. 70(2), pages 260-267, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ting & Zhang, Yi & Liu, Chun, 2024. "Robot adoption and employment adjustment: Firm-level evidence from China," China Economic Review, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnabé Walheer, 2016. "Multi-Sector Nonparametric Production-Frontier Analysis of the Economic Growth and the Convergence of the European Countries," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 498-524, October.
    2. Walheer, Barnabé, 2016. "Growth and convergence of the OECD countries: A multi-sector production-frontier approach," European Journal of Operational Research, Elsevier, vol. 252(2), pages 665-675.
    3. Walheer, Barnabé, 2018. "Labour productivity growth and energy in Europe: A production-frontier approach," Energy, Elsevier, vol. 152(C), pages 129-143.
    4. Oleg Badunenko & Daniel Henderson & R. Russell, 2013. "Polarization of the worldwide distribution of productivity," Journal of Productivity Analysis, Springer, vol. 40(2), pages 153-171, October.
    5. Kerekes, Monika, 2007. "Analyzing patterns of economic growth: a production frontier approach," Discussion Papers 2007/15, Free University Berlin, School of Business & Economics.
    6. Walheer, Barnabé, 2021. "Labor productivity and technology heterogeneity," Journal of Macroeconomics, Elsevier, vol. 68(C).
    7. Oleg Badunenko & Daniel J. Henderson & Valentin Zelenyuk, 2008. "Technological Change and Transition: Relative Contributions to Worldwide Growth During the 1990s," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 461-492, August.
    8. Falko Juessen, 2009. "A distribution dynamics approach to regional GDP convergence in unified Germany," Empirical Economics, Springer, vol. 37(3), pages 627-652, December.
    9. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    10. Klump, Rainer & Jurkat, Anne & Schneider, Florian, 2021. "Tracking the rise of robots: A survey of the IFR database and its applications," MPRA Paper 107909, University Library of Munich, Germany.
    11. Abeliansky, Ana & Algur, Eda & Bloom, David E. & Prettner, Klaus, 2020. "The Future of Work: Challenges for Job Creation Due to Global Demographic Change and Automation," IZA Discussion Papers 12962, Institute of Labor Economics (IZA).
    12. Henderson, Daniel J. & Tochkov, Kiril & Badunenko, Oleg, 2007. "A drive up the capital coast? Contributions to post-reform growth across Chinese provinces," Journal of Macroeconomics, Elsevier, vol. 29(3), pages 569-594, September.
    13. Yu Sheng & V. Eldon Ball & Kenneth Erickson & Carlos San Juan Mesonada, 2022. "Cross-country agricultural TFP convergence and capital deepening: evidence for induced innovation from 17 OECD countries," Journal of Productivity Analysis, Springer, vol. 58(2), pages 185-202, December.
    14. Ferreira Paulo & Dionísio Andreia, 2016. "GDP growth and convergence determinants in the European Union: a crisp-set analysis," Review of Economic Perspectives, Sciendo, vol. 16(4), pages 279-296, December.
    15. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    16. M. Herrerías, 2012. "Weighted convergence and regional growth in China: an alternative approach (1952–2008)," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(3), pages 685-718, December.
    17. Oleg Badunenko & Daniel J. Henderson & Valentin Zelenyuk, 2017. "The Productivity of Nations," CEPA Working Papers Series WP022017, School of Economics, University of Queensland, Australia.
    18. Jakub Growiec, 2012. "The World Technology Frontier: What Can We Learn from the US States?-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(6), pages 777-807, December.
    19. Eder, Andreas & Koller, Wolfgang & Mahlberg, Bernhard, 2024. "Industrial robots and employment change in manufacturing: A combination of index and production-theoretical decomposition analysis," MPRA Paper 121128, University Library of Munich, Germany.
    20. Perelman, Sergio & Walheer, Barnabé, 2020. "Economic growth and under-investment: A nonparametric approach," Economics Letters, Elsevier, vol. 186(C).

    More about this item

    Keywords

    automation; robotization; decomposition; data envelopment analysis; emerging countries; developed countries;
    All these keywords.

    JEL classification:

    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aso:wpaper:wp0004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yayun Xiao (email available below). General contact details of provider: https://iseapa.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.