IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2485-d1088487.html
   My bibliography  Save this article

Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems

Author

Listed:
  • Thiago Eliandro de Oliveira Gomes

    (Graduate Program in Production Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • André Ross Borniatti

    (Graduate Program in Production Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Vinícius Jacques Garcia

    (Graduate Program in Production Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Laura Lisiane Callai dos Santos

    (Academic Coordination, Campus Cachoeira do Sul, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Nelson Knak Neto

    (Academic Coordination, Campus Cachoeira do Sul, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Rui Anderson Ferrarezi Garcia

    (State Electric Power Company (CEEE), Equatorial Energy Group, Porto Alegre 91410-400, Brazil)

Abstract

Reliability is an important issue in electricity distribution systems, with strict regulatory policies and investments needed to improve it. This paper presents a mixed integer linear programming (MILP) model for clustering electrical customers, maximizing system reliability and minimizing outage costs. However, the evaluation of reliability and its corresponding nonlinear function represent a significant challenge, making the use of mathematical programming models difficult. The proposed heuristic procedure overcomes this challenge by using a linear formulation of reliability indicators and incorporating them into the MILP model for clustering electrical customers. The model is mainly defined on a density-based heuristic that constrains the set of possible medians, thus dealing with the combinatorial complexity associated with the problem of empowered p-medians. The proposed model proved to be effective in improving the reliability of real electrical distribution systems and reducing compensation costs. Three substation cluster scenarios were explored, in which the total utility compensations were reduced by approximately USD 86,000 (1.80%), USD 67,400 (1.41%), and USD 64,000 (1.3%). The solutions suggest a direct relationship between the reduction in the compensation costs and the system reliability. In addition, the alternative modeling approach to the problem served to match the performance between the distribution system reliability indicators.

Suggested Citation

  • Thiago Eliandro de Oliveira Gomes & André Ross Borniatti & Vinícius Jacques Garcia & Laura Lisiane Callai dos Santos & Nelson Knak Neto & Rui Anderson Ferrarezi Garcia, 2023. "Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems," Energies, MDPI, vol. 16(5), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2485-:d:1088487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    2. Silvia Corigliano & Federico Rosato & Carla Ortiz Dominguez & Marco Merlo, 2021. "Clustering Techniques for Secondary Substations Siting," Energies, MDPI, vol. 14(4), pages 1-18, February.
    3. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
    4. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
    6. Ahmadi, Samad & Osman, Ibrahim H., 2005. "Greedy random adaptive memory programming search for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 162(1), pages 30-44, April.
    7. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
    8. Barbosa, Ailson de Souza & Shayani, Rafael Amaral & Oliveira, Marco Aurélio Gonçalves de, 2018. "A multi-criteria decision analysis method for regulatory evaluation of electricity distribution service quality," Utilities Policy, Elsevier, vol. 53(C), pages 38-48.
    9. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    10. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
    2. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    3. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    4. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    5. Jing, Rui & Li, Yubing & Wang, Meng & Chachuat, Benoit & Lin, Jianyi & Guo, Miao, 2021. "Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design," Applied Energy, Elsevier, vol. 290(C).
    6. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
    7. Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
    8. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    9. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    10. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
    11. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    12. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    13. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    14. Zhang, Chao & Lasaulce, Samson & Hennebel, Martin & Saludjian, Lucas & Panciatici, Patrick & Poor, H. Vincent, 2021. "Decision-making oriented clustering: Application to pricing and power consumption scheduling," Applied Energy, Elsevier, vol. 297(C).
    15. García, Sebastián & Parejo, Antonio & Personal, Enrique & Ignacio Guerrero, Juan & Biscarri, Félix & León, Carlos, 2021. "A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level," Applied Energy, Elsevier, vol. 287(C).
    16. Eunjung Lee & Jinho Kim & Dongsik Jang, 2020. "Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study," Energies, MDPI, vol. 13(6), pages 1-18, March.
    17. Rafik Nafkha & Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques," Energies, MDPI, vol. 11(3), pages 1-17, February.
    18. Santiago Bañales & Raquel Dormido & Natividad Duro, 2021. "Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources," Energies, MDPI, vol. 14(12), pages 1-22, June.
    19. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    20. Kenjiro Yagi & Ramteen Sioshansi, 2023. "Simplifying capacity planning for electricity systems with hydroelectric and renewable generation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2485-:d:1088487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.