IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i3d10.1007_s10479-022-04527-4.html
   My bibliography  Save this article

Incorporation of gene ontology in identification of protein interactions from biomedical corpus: a multi-modal approach

Author

Listed:
  • Kanchan Jha

    (Indian Institute of Technology Patna)

  • Sriparna Saha

    (Indian Institute of Technology Patna)

  • Pratik Dutta

    (Indian Institute of Technology Patna)

Abstract

Knowledge of protein-protein interactions (PPI) is essential for studying protein functions and understanding the biological processes. Previously, most of the works on PPI in the BioNLP domain rely solely on textual data. With the availability of different information (structure, sequence, gene ontology) about proteins, researchers have started to use other details with textual data to predict PPI more accurately. This paper reports the first attempt in integrating gene ontology(GO)-based information with the features extracted from other two modalities of proteins namely 3D structure and existing textual information. Existing two popular text-based benchmark PPI corpora, i.e., BioInfer and HRPD50 are first extended to integrate with the structure and GO-based information. Finally, some deep learning-based techniques are employed to extract features from three modalities and those are concatenated for final prediction of protein interaction. The experimentation on generated multi-modal datasets illustrates that the proposed deep multi-modal framework outperforms the baselines (uni-modal, bi-modal and multi-modal) and state-of-the-art methods.

Suggested Citation

  • Kanchan Jha & Sriparna Saha & Pratik Dutta, 2024. "Incorporation of gene ontology in identification of protein interactions from biomedical corpus: a multi-modal approach," Annals of Operations Research, Springer, vol. 339(3), pages 1793-1811, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04527-4
    DOI: 10.1007/s10479-022-04527-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04527-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04527-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catia Pesquita & Daniel Faria & André O Falcão & Phillip Lord & Francisco M Couto, 2009. "Semantic Similarity in Biomedical Ontologies," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-12, July.
    2. Domonkos Tikk & Philippe Thomas & Peter Palaga & Jörg Hakenberg & Ulf Leser, 2010. "A Comprehensive Benchmark of Kernel Methods to Extract Protein–Protein Interactions from Literature," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    3. Anton Kocheturov & Panos M. Pardalos & Athanasia Karakitsiou, 2019. "Massive datasets and machine learning for computational biomedicine: trends and challenges," Annals of Operations Research, Springer, vol. 276(1), pages 5-34, May.
    4. Ramazan Ünlü & Petros Xanthopoulos, 2019. "A weighted framework for unsupervised ensemble learning based on internal quality measures," Annals of Operations Research, Springer, vol. 276(1), pages 229-247, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Johnson & Abdullah Albizri & Serhat Simsek, 2022. "Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis," Annals of Operations Research, Springer, vol. 308(1), pages 275-305, January.
    2. Charles Bettembourg & Christian Diot & Olivier Dameron, 2015. "Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-30, July.
    3. Triantaphyllou, Evangelos & Yanase, Juri & Hou, Fujun, 2020. "Post-consensus analysis of group decision making processes by means of a graph theoretic and an association rules mining approach," Omega, Elsevier, vol. 94(C).
    4. Dongmin Bang & Sangsoo Lim & Sangseon Lee & Sun Kim, 2023. "Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    6. Tom Narock & Lina Zhou & Victoria Yoon, 2013. "Semantic similarity of ontology instances using polarity mining," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 416-427, February.
    7. Xiaomei Wu & Erli Pang & Kui Lin & Zhen-Ming Pei, 2013. "Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    8. Yi-An Chen & Lokesh P Tripathi & Benoit H Dessailly & Johan Nyström-Persson & Shandar Ahmad & Kenji Mizuguchi, 2014. "Integrated Pathway Clusters with Coherent Biological Themes for Target Prioritisation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    9. Shandar Ahmad & Kenji Mizuguchi, 2011. "Partner-Aware Prediction of Interacting Residues in Protein-Protein Complexes from Sequence Data," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-11, December.
    10. Fran Supek & Matko Bošnjak & Nives Škunca & Tomislav Šmuc, 2011. "REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-9, July.
    11. Charles Bettembourg & Christian Diot & Olivier Dameron, 2014. "Semantic Particularity Measure for Functional Characterization of Gene Sets Using Gene Ontology," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    12. Adrian M Altenhoff & Romain A Studer & Marc Robinson-Rechavi & Christophe Dessimoz, 2012. "Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    13. Nurul Aswa Omar & Shahreen Kasim & Mohd. Farhan Md. Fuzzee & Azizul Azhar Ramli & Hairulnizam Mahdin & Seah Choon Sen, 2017. "A Review on Feature based Approach in Semantic Similarity for Multiple Ontology," Acta Informatica Malaysia (AIM), Zibeline International Publishing, vol. 1(1), pages 7-9, February.
    14. Laia Subirats & Luigi Ceccaroni & Felip Miralles, 2012. "Knowledge Representation for Prognosis of Health Status in Rehabilitation," Future Internet, MDPI, vol. 4(3), pages 1-14, August.
    15. Augusto Anguita-Ruiz & Alberto Segura-Delgado & Rafael Alcalá & Concepción M Aguilera & Jesús Alcalá-Fdez, 2020. "eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-34, April.
    16. Xiaotong Sun & Wei Xu & Hongxun Jiang & Qili Wang, 2021. "A deep multitask learning approach for air quality prediction," Annals of Operations Research, Springer, vol. 303(1), pages 51-79, August.
    17. Erfan Mehmanchi & Andrés Gómez & Oleg A. Prokopyev, 2021. "Solving a class of feature selection problems via fractional 0–1 programming," Annals of Operations Research, Springer, vol. 303(1), pages 265-295, August.
    18. Shibiao Wan & Man-Wai Mak & Sun-Yuan Kung, 2014. "HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    19. Pisanu Buphamalai & Tomislav Kokotovic & Vanja Nagy & Jörg Menche, 2021. "Network analysis reveals rare disease signatures across multiple levels of biological organization," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Kostandinos Tsaramirsis & Georgios Tsaramirsis & Fazal Qudus Khan & Awais Ahmad & Alaa Omar Khadidos & Adil Khadidos, 2019. "More Agility to Semantic Similarities Algorithm Implementations," IJERPH, MDPI, vol. 17(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04527-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.