IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0066745.html
   My bibliography  Save this article

Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method

Author

Listed:
  • Xiaomei Wu
  • Erli Pang
  • Kui Lin
  • Zhen-Ming Pei

Abstract

Background: Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC). Results and Conclusions: Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss.

Suggested Citation

  • Xiaomei Wu & Erli Pang & Kui Lin & Zhen-Ming Pei, 2013. "Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0066745
    DOI: 10.1371/journal.pone.0066745
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066745
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0066745&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0066745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catia Pesquita & Daniel Faria & André O Falcão & Phillip Lord & Francisco M Couto, 2009. "Semantic Similarity in Biomedical Ontologies," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-12, July.
    2. Won-Ki Huh & James V. Falvo & Luke C. Gerke & Adam S. Carroll & Russell W. Howson & Jonathan S. Weissman & Erin K. O'Shea, 2003. "Global analysis of protein localization in budding yeast," Nature, Nature, vol. 425(6959), pages 686-691, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issa Atoum, 2019. "Scaled Pearson’s Correlation Coefficient for Evaluating Text Similarity Measures," Modern Applied Science, Canadian Center of Science and Education, vol. 13(10), pages 1-26, October.
    2. Gaston K Mazandu & Nicola J Mulder, 2014. "Information Content-Based Gene Ontology Functional Similarity Measures: Which One to Use for a Given Biological Data Type?," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-20, December.
    3. Charles Bettembourg & Christian Diot & Olivier Dameron, 2015. "Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver M Crook & Aikaterini Geladaki & Daniel J H Nightingale & Owen L Vennard & Kathryn S Lilley & Laurent Gatto & Paul D W Kirk, 2020. "A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-21, November.
    2. Julia P. Schessner & Vincent Albrecht & Alexandra K. Davies & Pavel Sinitcyn & Georg H. H. Borner, 2023. "Deep and fast label-free Dynamic Organellar Mapping," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Louis-François Handfield & Yolanda T Chong & Jibril Simmons & Brenda J Andrews & Alan M Moses, 2013. "Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    5. Maya Dinur-Mills & Merav Tal & Ophry Pines, 2008. "Dual Targeted Mitochondrial Proteins Are Characterized by Lower MTS Parameters and Total Net Charge," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-8, May.
    6. Charles Bettembourg & Christian Diot & Olivier Dameron, 2015. "Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-30, July.
    7. Karamollah Bagherifard & Mohsen Rahmani & Vahid Rafe & Mehrbakhsh Nilashi, 2018. "A Recommendation Method Based on Semantic Similarity and Complementarity Using Weighted Taxonomy: A Case on Construction Materials Dataset," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-26, March.
    8. Kanchan Jha & Sriparna Saha & Pratik Dutta, 2024. "Incorporation of gene ontology in identification of protein interactions from biomedical corpus: a multi-modal approach," Annals of Operations Research, Springer, vol. 339(3), pages 1793-1811, August.
    9. Md. Abdulla Al Mamun & Wei Cao & Shugo Nakamura & Jun-ichi Maruyama, 2023. "Large-scale identification of genes involved in septal pore plugging in multicellular fungi," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Dongmin Bang & Sangsoo Lim & Sangseon Lee & Sun Kim, 2023. "Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Verena Kohler & Andreas Kohler & Lisa Larsson Berglund & Xinxin Hao & Sarah Gersing & Axel Imhof & Thomas Nyström & Johanna L. Höög & Martin Ott & Claes Andréasson & Sabrina Büttner, 2024. "Nuclear Hsp104 safeguards the dormant translation machinery during quiescence," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Nebojsa Jukic & Alma P. Perrino & Frédéric Humbert & Aurélien Roux & Simon Scheuring, 2022. "Snf7 spirals sense and alter membrane curvature," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Jian Cui & Jinghua Liu & Yuhua Li & Tieliu Shi, 2011. "Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-16, January.
    14. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    15. Tom Narock & Lina Zhou & Victoria Yoon, 2013. "Semantic similarity of ontology instances using polarity mining," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 416-427, February.
    16. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    17. Kiyan Shabestary & Cinzia Klemm & Benedict Carling & James Marshall & Juline Savigny & Marko Storch & Rodrigo Ledesma-Amaro, 2024. "Phenotypic heterogeneity follows a growth-viability tradeoff in response to amino acid identity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Michelle Lindström & Lihua Chen & Shan Jiang & Dan Zhang & Yuan Gao & Ju Zheng & Xinxin Hao & Xiaoxue Yang & Arpitha Kabbinale & Johannes Thoma & Lisa C. Metzger & Deyuan Y. Zhang & Xuefeng Zhu & Huis, 2022. "Lsm7 phase-separated condensates trigger stress granule formation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Joke J F A van Vugt & Martijn de Jager & Magdalena Murawska & Alexander Brehm & John van Noort & Colin Logie, 2009. "Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-14, July.
    20. Yi-An Chen & Lokesh P Tripathi & Benoit H Dessailly & Johan Nyström-Persson & Shandar Ahmad & Kenji Mizuguchi, 2014. "Integrated Pathway Clusters with Coherent Biological Themes for Target Prioritisation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0066745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.