IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003815.html
   My bibliography  Save this article

Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network

Author

Listed:
  • Frantisek Honti
  • Stephen Meader
  • Caleb Webber

Abstract

Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders.Author Summary: Plenty of gene variants have been associated with a disease, yet most of the heritability, along with the molecular basis, of common diseases remains unexplained. However, it is widely thought that the products of genes whose mutations are implicated in the same disease function together in the same biological pathways and it is the disruption of these pathways that underlies the disease. Such pathways are not well defined and their identification could help elucidate disease mechanisms. Consequently, groupwise functional analyses of gene variants to identify common disease-relevant pathways are becoming standard in next-generation sequencing studies, but we find that these analyses are confounded by coding-sequence length bias. We control for these bias and describe a phenotype-based approach which outperforms other methods in discerning functional associations among the disease-associated genes. We also demonstrate the suitability of this method to functionally dissect the gene variants underlying a complex disorder, the identified functional clusters offering insight into disease mechanisms.

Suggested Citation

  • Frantisek Honti & Stephen Meader & Caleb Webber, 2014. "Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-7, August.
  • Handle: RePEc:plo:pcbi00:1003815
    DOI: 10.1371/journal.pcbi.1003815
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003815
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003815&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.