IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007792.html
   My bibliography  Save this article

eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research

Author

Listed:
  • Augusto Anguita-Ruiz
  • Alberto Segura-Delgado
  • Rafael Alcalá
  • Concepción M Aguilera
  • Jesús Alcalá-Fdez

Abstract

Until date, several machine learning approaches have been proposed for the dynamic modeling of temporal omics data. Although they have yielded impressive results in terms of model accuracy and predictive ability, most of these applications are based on “Black-box” algorithms and more interpretable models have been claimed by the research community. The recent eXplainable Artificial Intelligence (XAI) revolution offers a solution for this issue, were rule-based approaches are highly suitable for explanatory purposes. The further integration of the data mining process along with functional-annotation and pathway analyses is an additional way towards more explanatory and biologically soundness models. In this paper, we present a novel rule-based XAI strategy (including pre-processing, knowledge-extraction and functional validation) for finding biologically relevant sequential patterns from longitudinal human gene expression data (GED). To illustrate the performance of our pipeline, we work on in vivo temporal GED collected within the course of a long-term dietary intervention in 57 subjects with obesity (GSE77962). As validation populations, we employ three independent datasets following the same experimental design. As a result, we validate primarily extracted gene patterns and prove the goodness of our strategy for the mining of biologically relevant gene-gene temporal relations. Our whole pipeline has been gathered under open-source software and could be easily extended to other human temporal GED applications.Author summary: Biological processes in humans are not single-gene based mechanisms, but complex systems controlled by regulatory interactions between thousands of genes. Within these gene regulatory networks, time-delay is a common phenomenon and genes interact each other within a four-dimension space. Hence, to fully understand or to control biological processes we need to unravel the principles of gene-gene temporal interactions. Until date, several approaches based on Artificial Intelligence methods have tried to address this issue. Nevertheless, the research community has claimed for more interpretable and biologically meaningful models. Particularly, scientists claim for methods able to infer gene-gene temporal interactions that could be later validated with real-life experiments at the lab. The recent revolution known as “eXplainable Artificial Intelligence” offers a solution for this issue, where a range of highly interpretable and explicable models has become available. Many of these methods could be applied to temporal gene expression data in order to decipher mentioned temporal gene-gene relationships in humans. Here, we propose and validate a new pipeline analysis including an eXplainable artificial intelligence method for the identification of comprehensible gene-gene temporal relationships from human intervention studies. Our method has been validated in six datasets from obesity research (consisting of low calorie diets interventions), where it was able to extract meaningful gene-gene temporal interactions with relevance the etiology of the disease. The application of our pipeline to other type of human temporal gene profiles would greatly expand our knowledge for complex biological processes, with a special interest for drug clinical trials, in which identified gene-gene regulatory interactions could reveal new therapeutic targets.

Suggested Citation

  • Augusto Anguita-Ruiz & Alberto Segura-Delgado & Rafael Alcalá & Concepción M Aguilera & Jesús Alcalá-Fdez, 2020. "eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-34, April.
  • Handle: RePEc:plo:pcbi00:1007792
    DOI: 10.1371/journal.pcbi.1007792
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007792
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007792&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catia Pesquita & Daniel Faria & André O Falcão & Phillip Lord & Francisco M Couto, 2009. "Semantic Similarity in Biomedical Ontologies," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-12, July.
    2. Douglas Zhou & Yanyang Xiao & Yaoyu Zhang & Zhiqin Xu & David Cai, 2014. "Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-17, February.
    3. Fatimah Abdul Razak & Henrik Jeldtoft Jensen, 2014. "Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-14, June.
    4. Shuheng Lin & Ana Negulescu & Sirisha Bulusu & Benjamin Gibert & Jean-Guy Delcros & Benjamin Ducarouge & Nicolas Rama & Nicolas Gadot & Isabelle Treilleux & Pierre Saintigny & Olivier Meurette & Patri, 2017. "Non-canonical NOTCH3 signalling limits tumour angiogenesis," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    5. Davide Castelvecchi, 2016. "Can we open the black box of AI?," Nature, Nature, vol. 538(7623), pages 20-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    2. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    3. Monica Billio & Lorenzo Frattarolo & Hayette Gatfaoui & Philippe de Peretti, 2016. "Clustering in Dynamic Causal Networks as a Measure of Systemic Risk on the Euro Zone," Documents de travail du Centre d'Economie de la Sorbonne 16046r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
    4. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    5. Laith T. Khrais, 2020. "Role of Artificial Intelligence in Shaping Consumer Demand in E-Commerce," Future Internet, MDPI, vol. 12(12), pages 1-14, December.
    6. Irving O Morales & Emmanuel Landa & Carlos Calderon Angeles & Juan C Toledo & Ana Leonor Rivera & Joel Mendoza Temis & Alejandro Frank, 2015. "Behavior of Early Warnings near the Critical Temperature in the Two-Dimensional Ising Model," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    7. Martin Eling & Davide Nuessle & Julian Staubli, 2022. "The impact of artificial intelligence along the insurance value chain and on the insurability of risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(2), pages 205-241, April.
    8. Canellas, Marc & Haga, Rachel, 2017. "Framing Human-Automation Regulation: A New Modus Operandi from Cognitive Engineering," LawArXiv yu2h3, Center for Open Science.
    9. Charles Bettembourg & Christian Diot & Olivier Dameron, 2015. "Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-30, July.
    10. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    11. Alwosheel, Ahmad & van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis," Journal of choice modelling, Elsevier, vol. 28(C), pages 167-182.
    12. Eduardo Graells-Garrido & Vanessa Peña-Araya & Loreto Bravo, 2020. "Adoption-Driven Data Science for Transportation Planning: Methodology, Case Study, and Lessons Learned," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    13. Karamollah Bagherifard & Mohsen Rahmani & Vahid Rafe & Mehrbakhsh Nilashi, 2018. "A Recommendation Method Based on Semantic Similarity and Complementarity Using Weighted Taxonomy: A Case on Construction Materials Dataset," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-26, March.
    14. Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    15. Dongmin Bang & Sangsoo Lim & Sangseon Lee & Sun Kim, 2023. "Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Chenfeng Yan & Quan Chen & Xinyue Zhou & Xin Dai & Zhilin Yang, 2024. "When the Automated fire Backfires: The Adoption of Algorithm-based HR Decision-making Could Induce Consumer’s Unfavorable Ethicality Inferences of the Company," Journal of Business Ethics, Springer, vol. 190(4), pages 841-859, April.
    17. Brian G Booth & Eva Hoefnagels & Toon Huysmans & Jan Sijbers & Noël L W Keijsers, 2020. "PAPPI: Personalized analysis of plantar pressure images using statistical modelling and parametric mapping," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    18. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    20. Dominic Chalmers & Niall G. MacKenzie & Sara Carter, 2021. "Artificial Intelligence and Entrepreneurship: Implications for Venture Creation in the Fourth Industrial Revolution," Entrepreneurship Theory and Practice, , vol. 45(5), pages 1028-1053, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.