COVID-19 vaccine hesitancy: a social media analysis using deep learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-022-04792-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maxime C. Cohen, 2018. "Big Data and Service Operations," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1709-1723, September.
- Liviu-Adrian Cotfas & Camelia Delcea & Rareș Gherai, 2021. "COVID-19 Vaccine Hesitancy in the Month Following the Start of the Vaccination Process," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
- Scott DuHadway & Steven Carnovale & Benjamin Hazen, 2019. "Understanding risk management for intentional supply chain disruptions: risk detection, risk mitigation, and risk recovery," Annals of Operations Research, Springer, vol. 283(1), pages 179-198, December.
- Ajay Kumar & Ram D. Gopal & Ravi Shankar & Kim Hua Tan, 2022. "Fraudulent review detection model focusing on emotional expressions and explicit aspects : investigating the potential of feature engineering," Post-Print hal-03630420, HAL.
- Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
- Andrew Kusiak, 2020. "Convolutional and generative adversarial neural networks in manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1594-1604, March.
- Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Nishikant Mishra & Akshit Singh, 2018. "Use of twitter data for waste minimisation in beef supply chain," Annals of Operations Research, Springer, vol. 270(1), pages 337-359, November.
- Samuel Fosso Wamba & Andrew Edwards & Shahriar Akter, 2019. "Social media adoption and use for improved emergency services operations: the case of the NSW SES," Annals of Operations Research, Springer, vol. 283(1), pages 225-245, December.
- Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
- Rameshwar Dubey & Nezih Altay & Constantin Blome, 2019. "Swift trust and commitment: The missing links for humanitarian supply chain coordination?," Annals of Operations Research, Springer, vol. 283(1), pages 159-177, December.
- Daniel A. Griffith & Bradley Boehmke & Randy V. Bradley & Benjamin T. Hazen & Alan W. Johnson, 2019. "Embedded analytics: improving decision support for humanitarian logistics operations," Annals of Operations Research, Springer, vol. 283(1), pages 247-265, December.
- Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana & Abhinav Kumar & Kawaljeet Kaur Kapoor, 2019. "Event classification and location prediction from tweets during disasters," Annals of Operations Research, Springer, vol. 283(1), pages 737-757, December.
- Rameshwar Dubey & Angappa Gunasekaran & Thanos Papadopoulos, 2019. "Disaster relief operations: past, present and future," Annals of Operations Research, Springer, vol. 283(1), pages 1-8, December.
- Quyen G. To & Kien G. To & Van-Anh N. Huynh & Nhung T. Q. Nguyen & Diep T. N. Ngo & Stephanie J. Alley & Anh N. Q. Tran & Anh N. P. Tran & Ngan T. T. Pham & Thanh X. Bui & Corneel Vandelanotte, 2021. "Applying Machine Learning to Identify Anti-Vaccination Tweets during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(8), pages 1-9, April.
- Shannon M. Fast & Louis Kim & Emily L. Cohn & Sumiko R. Mekaru & John S. Brownstein & Natasha Markuzon, 2018. "Predicting social response to infectious disease outbreaks from internet-based news streams," Annals of Operations Research, Springer, vol. 263(1), pages 551-564, April.
- Martínez-Rojas, María & Pardo-Ferreira, María del Carmen & Rubio-Romero, Juan Carlos, 2018. "Twitter as a tool for the management and analysis of emergency situations: A systematic literature review," International Journal of Information Management, Elsevier, vol. 43(C), pages 196-208.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Azrah Anparasan & Miguel Lejeune, 2019. "Resource deployment and donation allocation for epidemic outbreaks," Annals of Operations Research, Springer, vol. 283(1), pages 9-32, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sameer Kumar & Chong Xu & Nidhi Ghildayal & Charu Chandra & Muer Yang, 2022. "Social media effectiveness as a humanitarian response to mitigate influenza epidemic and COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 823-851, December.
- Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
- Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
- K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
- Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
- Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022.
"Agility in humanitarian supply chain: an organizational information processing perspective and relational view,"
Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
- Rameshwar Dubey & David Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Post-Print hal-03931989, HAL.
- Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
- Mihalis Giannakis & Rameshwar Dubey & Shishi Yan & Konstantina Spanaki & Thanos Papadopoulos, 2022. "Social media and sensemaking patterns in new product development: demystifying the customer sentiment," Annals of Operations Research, Springer, vol. 308(1), pages 145-175, January.
- Purva Grover & Arpan Kumar Kar & Yogesh K. Dwivedi, 2022. "Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions," Annals of Operations Research, Springer, vol. 308(1), pages 177-213, January.
- Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
- Manjul Gupta & Amin Shoja & Patrick Mikalef, 2022. "Toward the understanding of national culture in the success of non‐pharmaceutical technological interventions in mitigating COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1433-1450, December.
- Carlos Galera-Zarco & Goulielmos Floros, 2024. "A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making," Annals of Operations Research, Springer, vol. 339(1), pages 573-612, August.
- Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024.
"Panel data nowcasting: The case of price–earnings ratios,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2023. "Panel Data Nowcasting: The Case of Price-Earnings Ratios," Papers 2307.02673, arXiv.org.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022.
"Artificial intelligence and systemic risk,"
Journal of Banking & Finance, Elsevier, vol. 140(C).
- Danielsson, Jon & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," LSE Research Online Documents on Economics 111601, London School of Economics and Political Science, LSE Library.
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
More about this item
Keywords
Deep learning; Neural network; LSTM; Text classification; Vaccine hesitancy; COVID-19; Twitter;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04792-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.