IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-04612-8.html
   My bibliography  Save this article

A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem

Author

Listed:
  • Fuat Kosanoglu

    (Yalova University)

  • Mahir Atmis

    (Yalova University)

  • Hasan Hüseyin Turan

    (University of New South Wales)

Abstract

Maintenance planning aims to improve the reliability of assets, prevent the occurrence of asset failures, and reduce maintenance costs associated with downtime of assets and maintenance resources (such as spare parts and workforce). Thus, effective maintenance planning is instrumental in ensuring high asset availability with the minimum cost. Nevertheless, to find such optimal planning is a nontrivial task due to the (i) complex and usually nonlinear inter-relationship between different planning decisions (e.g., inventory level and workforce capacity), and (ii) stochastic nature of the system (e.g., random failures of parts installed in assets). To alleviate these challenges, we study a joint maintenance planning problem by considering several decisions simultaneously, including workforce planning, workforce training, and spare parts inventory management. We develop a hybrid solution algorithm ( $$\mathcal {DRLSA}$$ DRLSA ) that is a combination of Double Deep Q-Network based Deep Reinforcement Learning (DRL) and Simulated Annealing (SA) algorithms. In each episode of the proposed algorithm, the best solution found by DRL is delivered to SA to be used as an initial solution, and the best solution of SA is delivered to DRL to be used as the initial state. Different from the traditional SA algorithms where neighborhood structures are selected only randomly, the DRL part of $$\mathcal {DRLSA}$$ DRLSA learns to choose the best neighborhood structure to use based on experience gained from previous episodes. We compare the performance of the proposed solution algorithm with several well-known meta-heuristic algorithms, including Simulated Annealing, Genetic Algorithm (GA), and Variable Neighborhood Search (VNS). Further, we also develop a Machine Learning (ML) algorithm (i.e., K-Median) as another benchmark in which different properties of spare parts (e.g., failure rates, holding costs, and repair rates) are used as clustering features for the ML algorithm. Our study reveals that the $$\mathcal {DRLSA}$$ DRLSA finds the optimal solutions for relatively small-size instances, and it has the potential to outperform traditional meta-heuristic and ML algorithms.

Suggested Citation

  • Fuat Kosanoglu & Mahir Atmis & Hasan Hüseyin Turan, 2024. "A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem," Annals of Operations Research, Springer, vol. 339(1), pages 79-110, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04612-8
    DOI: 10.1007/s10479-022-04612-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04612-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04612-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04612-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.