IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i1d10.1007_s10479-023-05613-x.html
   My bibliography  Save this article

A theoretical and empirical study of job scheduling in cloud computing environments: the weighted completion time minimization problem with capacitated parallel machines

Author

Listed:
  • Ilan Reuven Cohen

    (Bar-Ilan University)

  • Izack Cohen

    (Bar-Ilan University)

  • Iyar Zaks

    (Technion–Israel Institute of Technology)

Abstract

We consider the weighted completion time minimization problem for capacitated parallel machines, which is a fundamental problem in modern cloud computing environments. In our setting, the processed jobs may be of varying duration, require different resources, and be of unequal importance (weight). Each server (machine) can process multiple concurrent jobs up to its capacity. We study heuristic approaches with provable approximation guarantees and offer an algorithm that prioritizes the jobs with the smallest volume-by-weight ratio. We bound the algorithm’s approximation ratio using a decreasing function of the ratio between the highest resource demand of any job and the server’s capacity. Thereafter, we create a hybrid, constant approximation algorithm for two or more machines. We also develop a constant approximation algorithm for the case of a single machine. Via a numerical study and a mixed-integer linear program of the problem, we demonstrate the performance of the suggested algorithm with respect to the optimal solutions and alternative scheduling methods. We show that the suggested scheduling method can be applied to both offline and online problems that may arise in real-world settings. This research is the first, to the best of our knowledge, to propose a polynomial-time algorithm with a constant approximation ratio for minimizing the weighted sum of job completion times for capacitated parallel machines.

Suggested Citation

  • Ilan Reuven Cohen & Izack Cohen & Iyar Zaks, 2024. "A theoretical and empirical study of job scheduling in cloud computing environments: the weighted completion time minimization problem with capacitated parallel machines," Annals of Operations Research, Springer, vol. 338(1), pages 429-452, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05613-x
    DOI: 10.1007/s10479-023-05613-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05613-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05613-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shimon Bitton & Izack Cohen & Morris Cohen, 2019. "Joint repair sourcing and stocking policies for repairables using Erlang-A and Erlang-B queueing models," IISE Transactions, Taylor & Francis Journals, vol. 51(10), pages 1151-1166, October.
    2. Jianer Chen & Chung‐Yee Lee, 1999. "General multiprocessor task scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 57-74, February.
    3. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    4. Bukchin, Yossi & Raviv, Tal & Zaides, Ilya, 2020. "The consecutive multiprocessor job scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 427-438.
    5. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    6. Shijin Wang & Wenli Cui, 2021. "Approximation algorithms for the min-max regret identical parallel machine scheduling problem with outsourcing and uncertain processing time," International Journal of Production Research, Taylor & Francis Journals, vol. 59(15), pages 4579-4592, August.
    7. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    8. Dominik Kress & Sebastian Meiswinkel & Erwin Pesch, 2018. "Mechanism design for machine scheduling problems: classification and literature overview," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 583-611, July.
    9. W. L. Eastman & S. Even & I. M. Isaacs, 1964. "Bounds for the Optimal Scheduling of n Jobs on m Processors," Management Science, INFORMS, vol. 11(2), pages 268-279, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Liu & Maurice Queyranne & David Simchi‐Levi, 2005. "On the asymptotic optimality of algorithms for the flow shop problem with release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 232-242, April.
    2. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    3. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    4. Felipe T. Muñoz & Rodrigo Linfati, 2024. "Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines," Mathematics, MDPI, vol. 12(14), pages 1-12, July.
    5. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    6. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    7. van Beek, Andries & Malmberg, Benjamin & Borm, Peter & Quant, Marieke & Schouten, Jop, 2021. "Cooperation and Competition in Linear Production and Sequencing Processes," Discussion Paper 2021-011, Tilburg University, Center for Economic Research.
    8. Reijnierse, Hans & Borm, Peter & Quant, Marieke & Meertens, Marc, 2010. "Processing games with restricted capacities," European Journal of Operational Research, Elsevier, vol. 202(3), pages 773-780, May.
    9. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    10. Borm, Peter & Fiestras-Janeiro, Gloria & Hamers, Herbert & Sanchez, Estela & Voorneveld, Mark, 2002. "On the convexity of games corresponding to sequencing situations with due dates," European Journal of Operational Research, Elsevier, vol. 136(3), pages 616-634, February.
    11. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    12. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    13. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    14. M. Musegaas & P. E. M. Borm & M. Quant, 2018. "On the convexity of step out–step in sequencing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 68-109, April.
    15. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    16. Musegaas, M. & Borm, P.E.M. & Quant, M., 2015. "Step out–Step in sequencing games," European Journal of Operational Research, Elsevier, vol. 246(3), pages 894-906.
    17. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    18. Atay, Ata & Trudeau, Christian, 2024. "Queueing games with an endogenous number of machines," Games and Economic Behavior, Elsevier, vol. 144(C), pages 104-125.
    19. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    20. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05613-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.