IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v106y2022i4d10.1007_s10182-022-00440-0.html
   My bibliography  Save this article

A quantile regression perspective on external preference mapping

Author

Listed:
  • Cristina Davino

    (University of Naples Federico II)

  • Tormod Næs

    (Nofima AS)

  • Rosaria Romano

    (University of Naples Federico II)

  • Domenico Vistocco

    (University of Naples Federico II)

Abstract

External preference mapping is widely used in marketing and R&D divisions to understand the consumer behaviour. The most common preference map is obtained through a two-step procedure that combines principal component analysis and least squares regression. The standard approach exploits classical regression and therefore focuses on the conditional mean. This paper proposes the use of quantile regression to enrich the preference map looking at the whole distribution of the consumer preference. The enriched maps highlight possible different consumer behaviour with respect to the less or most preferred products. This is pursued by exploring the variability of liking along the principal components as well as focusing on the direction of preference. The use of different aesthetics (colours, shapes, size, arrows) equips standard preference map with additional information and does not force the user to change the standard tool she/he is used to. The proposed methodology is shown in action on a case study pertaining yogurt preferences.

Suggested Citation

  • Cristina Davino & Tormod Næs & Rosaria Romano & Domenico Vistocco, 2022. "A quantile regression perspective on external preference mapping," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 545-571, December.
  • Handle: RePEc:spr:alstar:v:106:y:2022:i:4:d:10.1007_s10182-022-00440-0
    DOI: 10.1007/s10182-022-00440-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-022-00440-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-022-00440-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    3. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    4. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    5. William Gould, 1993. "Quantile regression with bootstrapped standard errors," Stata Technical Bulletin, StataCorp LP, vol. 2(9).
    6. Cristina Davino & Rosaria Romano & Domenico Vistocco, 2020. "On the use of quantile regression to deal with heterogeneity: the case of multi-block data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 771-784, December.
    7. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    2. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    3. Dimelis, S. & Louri-Dendrinou, Eleni, 2001. "Foreign Direct Investment and Efficiency Benefits: A Conditional Quantile Analysis," CEPR Discussion Papers 2868, C.E.P.R. Discussion Papers.
    4. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    5. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    6. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    7. Halkos, George, 2010. "Modelling biodiversity," MPRA Paper 39075, University Library of Munich, Germany.
    8. Ajanaku, Bolarinwa A. & Collins, Alan R., 2024. "“Comparing merit order effects of wind penetration across wholesale electricity markets”," Renewable Energy, Elsevier, vol. 226(C).
    9. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    10. Tae-Hwan Kim & Halbert White, 2003. "Estimation, Inference, And Specification Testing For Possibly Misspecified Quantile Regression," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 107-132, Emerald Group Publishing Limited.
    11. Furno, Marilena, 1998. "Estimating the variance of the LAD regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 11-26, March.
    12. Kollias Christos & Paleologou Suzanna-Maria & Tzeremes Panayiotis, 2020. "Defence Spending and Unemployment in the USA: Disaggregated Analysis by Gender and Age Groups," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 26(2), pages 1-13, May.
    13. Maria Letizia Giorgetti, 2001. "Quantile Regression in Lower Bound Estimation," STICERD - Economics of Industry Papers 29, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Chevapatrakul, Thanaset, 2015. "Monetary environments and stock returns: International evidence based on the quantile regression technique," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 83-108.
    15. Andrews, Donald W. K. & Buchinsky, Moshe, 2001. "Evaluation of a three-step method for choosing the number of bootstrap repetitions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 345-386, July.
    16. Variyam, Jayachandran N., 2001. "Wic Participation And The Nutrient Intake Of Preschoolers," 2001 Annual meeting, August 5-8, Chicago, IL 20623, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Kan, Kamhon & Tsai, Wei-Der, 2004. "Obesity and risk knowledge," Journal of Health Economics, Elsevier, vol. 23(5), pages 907-934, September.
    18. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
    19. Liu Yuan & Bottai Matteo, 2009. "Mixed-Effects Models for Conditional Quantiles with Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-24, November.
    20. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:106:y:2022:i:4:d:10.1007_s10182-022-00440-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.