IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i2p697-714.html
   My bibliography  Save this article

Stochastic Sequential Allocations for Creative Crowdsourcing

Author

Listed:
  • Xuhan Tian
  • Junmin (Jim) Shi
  • Xiangtong Qi

Abstract

Creative crowdsourcing is an innovative online business model in which a platform marshals independent professionals (e.g., designers) to conduct creative work projects. Typically, clients submit project requests stochastically to a platform which possesses a pool of registered designers. For each submitted project, designers decide whether to participate and attempt to submit a design, and the client either chooses a winner among all submissions, or rejects them all, based on subjective criteria. In general, platforms cannot control individual designers directly because of the nature of the freelance market, incurring possible mismatches between designers and arriving projects. To tackle the problem, we present a dynamic control policy applied to the maximum number of participants for each arrived project. Our study reveals that the optimal policy follows an inverted‐U‐shaped function of the project value, highlighting the importance of applying a stronger restriction on the number of participants for some sufficiently high‐valued projects. In addition, the optimal policy we have developed allows the platform to gain higher rewards judiciously even when the market is more volatile. Furthermore, extensive numerical studies have been conducted to glean managerial insights. Specifically, the optimal policy becomes more beneficial even when more designers are available, which is counter‐intuitive to the common‐sense notion that control should be more valuable when designers are scarcer; and the optimal policy is further shown to be robust when the objective is changed from maximizing the total reward to maximizing the total number of successful projects.

Suggested Citation

  • Xuhan Tian & Junmin (Jim) Shi & Xiangtong Qi, 2022. "Stochastic Sequential Allocations for Creative Crowdsourcing," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 697-714, February.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:2:p:697-714
    DOI: 10.1111/poms.13573
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13573
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    2. Cyrus Derman & Gerald J. Lieberman & Sheldon M. Ross, 1972. "A Sequential Stochastic Assignment Problem," Management Science, INFORMS, vol. 18(7), pages 349-355, March.
    3. Arash Khatibi & Sheldon H. Jacobson, 2016. "Doubly Stochastic Sequential Assignment Problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 124-137, March.
    4. Ying-Ju Chen & Tinglong Dai & C. Gizem Korpeoglu & Ersin Körpeoğlu & Ozge Sahin & Christopher S. Tang & Shihong Xiao, 2020. "OM Forum—Innovative Online Platforms: Research Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 430-445, May.
    5. Burcu Balcik & Seyed Iravani & Karen Smilowitz, 2014. "Multi-vehicle sequential resource allocation for a nonprofit distribution system," IISE Transactions, Taylor & Francis Journals, vol. 46(12), pages 1279-1297, December.
    6. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    7. Tracy Xiao Liu & Jiang Yang & Lada A. Adamic & Yan Chen, 2014. "Crowdsourcing with All-Pay Auctions: A Field Experiment on Taskcn," Management Science, INFORMS, vol. 60(8), pages 2020-2037, August.
    8. Laurence Ales & Soo-Haeng Cho & Ersin Körpeoğlu, 2017. "Optimal Award Scheme in Innovation Tournaments," Operations Research, INFORMS, vol. 65(3), pages 693-702, June.
    9. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    10. Jim (Junmin) Shi & Yao Zhao & Rose B. Karimi Kiwanuka & Jasmine (Aichih) Chang, 2019. "Optimal Selling Policies for Farmer Cooperatives," Production and Operations Management, Production and Operations Management Society, vol. 28(12), pages 3060-3080, December.
    11. Alexander G. Nikolaev & Sheldon H. Jacobson, 2010. "Technical Note ---Stochastic Sequential Decision-Making with a Random Number of Jobs," Operations Research, INFORMS, vol. 58(4-part-1), pages 1023-1027, August.
    12. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
    13. Robert W. Lien & Seyed M. R. Iravani & Karen R. Smilowitz, 2014. "Sequential Resource Allocation for Nonprofit Operations," Operations Research, INFORMS, vol. 62(2), pages 301-317, April.
    14. Segev, Ella, 2020. "Crowdsourcing contests," European Journal of Operational Research, Elsevier, vol. 281(2), pages 241-255.
    15. Saif Benjaafar & Ming Hu, 2020. "Operations Management in the Age of the Sharing Economy: What Is Old and What Is New?," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 93-101, January.
    16. D. P. Kennedy, 1986. "Optimal Sequential Assignment," Mathematics of Operations Research, INFORMS, vol. 11(4), pages 619-626, November.
    17. Gregory P. Prastacos, 1983. "Optimal Sequential Investment Decisions Under Conditions of Uncertainty," Management Science, INFORMS, vol. 29(1), pages 118-134, January.
    18. C. Derman & G. J. Lieberman & S. M. Ross, 1975. "A Stochastic Sequential Allocation Model," Operations Research, INFORMS, vol. 23(6), pages 1120-1130, December.
    19. Kostas Bimpikis & Shayan Ehsani & Mohamed Mostagir, 2019. "Designing Dynamic Contests," Operations Research, INFORMS, vol. 67(2), pages 339-356, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    2. Jian Yang & Jim (Junmin) Shi, 2023. "Discrete‐item inventory control involving unknown censored demand and convex inventory costs," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 45-64, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David T. Wu & Sheldon M. Ross, 2015. "A stochastic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 23-31, February.
    2. Alexander G. Nikolaev & Sheldon H. Jacobson, 2010. "Technical Note ---Stochastic Sequential Decision-Making with a Random Number of Jobs," Operations Research, INFORMS, vol. 58(4-part-1), pages 1023-1027, August.
    3. Arash Khatibi & Sheldon H. Jacobson, 2016. "Doubly Stochastic Sequential Assignment Problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 124-137, March.
    4. Yuanzheng Ma & Tong Wang & Huan Zheng, 2023. "On fairness and efficiency in nonprofit operations: Dynamic resource allocations," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1778-1792, June.
    5. Arash Khatibi & Golshid Baharian & Banafsheh Behzad & Sheldon Jacobson, 2015. "Extensions of the sequential stochastic assignment problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 317-340, December.
    6. Meghan Shanks & Ge Yu & Sheldon H. Jacobson, 2023. "Approximation algorithms for stochastic online matching with reusable resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 43-56, August.
    7. Can Zhang & Atalay Atasu & Turgay Ayer & L. Beril Toktay, 2020. "Truthful Mechanisms for Medical Surplus Product Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 735-753, July.
    8. Tianke Feng & Joseph C. Hartman, 2015. "The dynamic and stochastic knapsack Problem with homogeneous‐sized items and postponement options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 267-292, June.
    9. C. Gizem Korpeoglu & Ersin Körpeoğlu & Sıdıka Tunç, 2021. "Optimal Duration of Innovation Contests," Manufacturing & Service Operations Management, INFORMS, vol. 23(3), pages 657-675, May.
    10. Sheldon M. Ross & Gideon Weiss & Zhengyu Zhang, 2021. "Technical Note—A Stochastic Assignment Problem with Unknown Eligibility Probabilities," Operations Research, INFORMS, vol. 69(1), pages 266-272, January.
    11. Ming Hu, 2021. "From the Classics to New Tunes: A Neoclassical View on Sharing Economy and Innovative Marketplaces," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1668-1685, June.
    12. Adrian Lee & Sheldon Jacobson, 2011. "Sequential stochastic assignment under uncertainty: estimation and convergence," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 21-46, February.
    13. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    14. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    15. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    16. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    17. J. Álvaro Gómez-Pantoja & M. Angélica Salazar-Aguilar & José Luis González-Velarde, 2021. "The food bank resource allocation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 266-286, April.
    18. Golshid Baharian & Sheldon H. Jacobson, 2013. "Limiting behavior of the stochastic sequential assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 321-330, June.
    19. Ohad Eisenhandler & Michal Tzur, 2019. "A Segment-Based Formulation and a Matheuristic for the Humanitarian Pickup and Distribution Problem," Transportation Science, INFORMS, vol. 53(5), pages 1389-1408, September.
    20. Esteban Ogazón & Neale R. Smith & Angel Ruiz, 2022. "Reconfiguration of Foodbank Network Logistics to Cope with a Sudden Disaster," Mathematics, MDPI, vol. 10(9), pages 1-20, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:2:p:697-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.