IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v320y2023i2d10.1007_s10479-021-04393-6.html
   My bibliography  Save this article

UAV routing by simulation-based optimization approaches for forest fire risk mitigation

Author

Listed:
  • Omer Ozkan

    (Turkish Air Force Academy, National Defence University)

  • Sezgin Kilic

    (Air NCO Vocational HE School, National Defence University)

Abstract

The magnitude of the recent forest fires, the time required to extinguish them, and the damage they caused have attracted the attention of all humanity. If the current trend continues, it will cause great irreversible losses. There is a great need for scientific studies to prevent or reduce the damages of these fires. In this context, this paper proposes algorithms and mathematical models for generating the routes of unmanned aerial vehicles to detect forest fires that may occur especially in regions far from residential areas. A novel heuristic dispatching rule and a simulation-based optimization algorithm are proposed. The striking features of the proposed algorithms are that the routes are created with a focus on minimizing the fire probabilities. The uncertainties and dynamics of real-life are also considered. Various scenarios have experimented on a realistic case. Experimental results and findings are promising.

Suggested Citation

  • Omer Ozkan & Sezgin Kilic, 2023. "UAV routing by simulation-based optimization approaches for forest fire risk mitigation," Annals of Operations Research, Springer, vol. 320(2), pages 937-973, January.
  • Handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04393-6
    DOI: 10.1007/s10479-021-04393-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04393-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04393-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Virginie Gabrel & Cécile Murat & Lei Wu, 2013. "New models for the robust shortest path problem: complexity, resolution and generalization," Annals of Operations Research, Springer, vol. 207(1), pages 97-120, August.
    2. Lanah Evers & Twan Dollevoet & Ana Barros & Herman Monsuur, 2014. "Robust UAV mission planning," Annals of Operations Research, Springer, vol. 222(1), pages 293-315, November.
    3. Diego Oliva & Pedro Copado & Salvador Hinojosa & Javier Panadero & Daniel Riera & Angel A. Juan, 2020. "Fuzzy Simheuristics: Solving Optimization Problems under Stochastic and Uncertainty Scenarios," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    4. Javier Panadero & Angel A. Juan & Christopher Bayliss & Christine Currie, 2020. "Maximising reward from a team of surveillance drones: a simheuristic approach to the stochastic team orienteering problem," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 14(4), pages 485-516.
    5. Edward Ianovsky & Joseph Kreimer, 2011. "An optimal routing policy for unmanned aerial vehicles (analytical and cross-entropy simulation approach)," Annals of Operations Research, Springer, vol. 189(1), pages 215-253, September.
    6. Viviana Otero Fadul & Ruben Van De Kerchove & Behara Satyanarayana & Columba Martínez-Espinosa & Muhammad Amir Bin Fisol & Mohd Rodila Bin Ibrahim & Sulong Ibrahim & Husain Mohd-Lokman & Richard Lucas, 2018. "Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia," ULB Institutional Repository 2013/269731, ULB -- Universite Libre de Bruxelles.
    7. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    8. Zheng Wang & Lin Lin, 2013. "A Simulation-Based Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Travel Times," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Peyman & Pedro J. Copado & Rafael D. Tordecilla & Leandro do C. Martins & Fatos Xhafa & Angel A. Juan, 2021. "Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems," Energies, MDPI, vol. 14(19), pages 1-26, October.
    2. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    3. Angel A. Juan & Peter Keenan & Rafael Martí & Seán McGarraghy & Javier Panadero & Paula Carroll & Diego Oliva, 2023. "A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 831-861, January.
    4. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    5. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    6. Danışment Vural & Robert F. Dell & Erkan Kose, 2021. "Locating unmanned aircraft systems for multiple missions under different weather conditions," Operational Research, Springer, vol. 21(1), pages 725-744, March.
    7. Zhengyu Wang & Lubei Yi & Wenqiang Xu & Xueting Zheng & Shimei Xiong & Anming Bao, 2023. "Integration of UAV and GF-2 Optical Data for Estimating Aboveground Biomass in Spruce Plantations in Qinghai, China," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    8. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    9. Jinzuo Guo & Tianyu Liu & Guopeng Song & Bo Guo, 2024. "Solving the Robust Shortest Path Problem with Multimodal Transportation," Mathematics, MDPI, vol. 12(19), pages 1-14, September.
    10. Andrés Martínez-Reyes & Carlos L. Quintero-Araújo & Elyn L. Solano-Charris, 2021. "Supplying Personal Protective Equipment to Intensive Care Units during the COVID-19 Outbreak in Colombia. A Simheuristic Approach Based on the Location-Routing Problem," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    11. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.
    13. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    14. Marvin L. King & David R. Galbreath & Alexandra M. Newman & Amanda S. Hering, 2020. "Combining regression and mixed-integer programming to model counterinsurgency," Annals of Operations Research, Springer, vol. 292(1), pages 287-320, September.
    15. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
    16. José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    17. José Lemus-Romani & Marcelo Becerra-Rozas & Broderick Crawford & Ricardo Soto & Felipe Cisternas-Caneo & Emanuel Vega & Mauricio Castillo & Diego Tapia & Gino Astorga & Wenceslao Palma & Carlos Castro, 2021. "A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems," Mathematics, MDPI, vol. 9(22), pages 1-41, November.
    18. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    19. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    20. Kennette M. Arboiz & Sotero O. Malayao Jr., 2024. "A Simulation-based Guided Inquiry Laboratory Package in Teaching Mirrors and Lenses for Grade 10 Learners," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 2558-2567, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04393-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.