IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2240-d464393.html
   My bibliography  Save this article

Fuzzy Simheuristics: Solving Optimization Problems under Stochastic and Uncertainty Scenarios

Author

Listed:
  • Diego Oliva

    (IN3—Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
    Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, Guadalajara 44160, Mexico)

  • Pedro Copado

    (IN3—Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Salvador Hinojosa

    (Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, Guadalajara 44160, Mexico
    Tecnologico de Monterrey, School of Engineering and Science, Zapopan 45201, Mexico)

  • Javier Panadero

    (IN3—Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Daniel Riera

    (IN3—Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Angel A. Juan

    (IN3—Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

Abstract

Simheuristics combine metaheuristics with simulation in order to solve the optimization problems with stochastic elements. This paper introduces the concept of fuzzy simheuristics, which extends the simheuristics approach by making use of fuzzy techniques, thus allowing us to tackle optimization problems under a more general scenario, which includes uncertainty elements of both stochastic and non-stochastic nature. After reviewing the related work, the paper discusses, in detail, how the optimization, simulation, and fuzzy components can be efficiently integrated. In order to illustrate the potential of fuzzy simheuristics, we consider the team orienteering problem (TOP) under an uncertainty scenario, and perform a series of computational experiments. The obtained results show that our proposed approach is not only able to generate competitive solutions for the deterministic version of the TOP, but, more importantly, it can effectively solve more realistic TOP versions, including stochastic and other uncertainty elements.

Suggested Citation

  • Diego Oliva & Pedro Copado & Salvador Hinojosa & Javier Panadero & Daniel Riera & Angel A. Juan, 2020. "Fuzzy Simheuristics: Solving Optimization Problems under Stochastic and Uncertainty Scenarios," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2240-:d:464393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghodsypour, S. H. & O'Brien, C., 1998. "A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming," International Journal of Production Economics, Elsevier, vol. 56(1), pages 199-212, September.
    2. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    3. Faulin, Javier & Juan, Angel A. & Serrat, Carles & Bargueño, Vicente, 2008. "Predicting availability functions in time-dependent complex systems with SAEDES simulation algorithms," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1761-1771.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omer Ozkan & Sezgin Kilic, 2023. "UAV routing by simulation-based optimization approaches for forest fire risk mitigation," Annals of Operations Research, Springer, vol. 320(2), pages 937-973, January.
    2. Angel A. Juan & Peter Keenan & Rafael Martí & Seán McGarraghy & Javier Panadero & Paula Carroll & Diego Oliva, 2023. "A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 831-861, January.
    3. Juliana Castaneda & Xabier A. Martin & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2022. "A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty," Mathematics, MDPI, vol. 10(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    4. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    5. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    6. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    7. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    8. Huang, Samuel H. & Keskar, Harshal, 2007. "Comprehensive and configurable metrics for supplier selection," International Journal of Production Economics, Elsevier, vol. 105(2), pages 510-523, February.
    9. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    10. Ali Salmasnia & Hamid Daliri & Ali Ghorbanian & Hadi Mokhtari, 2018. "A statistical analysis and simulation based approach to an uncertain supplier selection problem with discount option," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1250-1259, December.
    11. Hsu, C.-H. & Wang, Fu-Kwun & Tzeng, Gwo-Hshiung, 2012. "The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 95-111.
    12. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    13. Imane Tronnebati & Manal El Yadari & Fouad Jawab, 2022. "A Review of Green Supplier Evaluation and Selection Issues Using MCDM, MP and AI Models," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    14. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 2017. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 17(3), pages 275-314, September.
    15. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    16. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    17. Hajji, Adnene & Gharbi, Ali & Kenne, Jean-Pierre & Pellerin, Robert, 2011. "Production control and replenishment strategy with multiple suppliers," European Journal of Operational Research, Elsevier, vol. 208(1), pages 67-74, January.
    18. Ehsan Afshar Bakeshlou & Alireza Arshadi Khamseh & Mohammad Ali Goudarzian Asl & Javad Sadeghi & Mostafa Abbaszadeh, 2017. "Evaluating a green supplier selection problem using a hybrid MODM algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 913-927, April.
    19. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 0. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 0, pages 1-40.
    20. Rajiv Kumar Sharma, 2022. "Examining interaction among supplier selection strategies in an outsourcing environment using ISM and fuzzy logic approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2175-2194, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2240-:d:464393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.