IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v320y2023i2d10.1007_s10479-021-04225-7.html
   My bibliography  Save this article

Discovering optimal strategy in tactical combat scenarios through the evolution of behaviour trees

Author

Listed:
  • Martin Masek

    (Edith Cowan University)

  • Chiou Peng Lam

    (Edith Cowan University)

  • Luke Kelly

    (Edith Cowan University)

  • Martin Wong

    (Defence Science and Technology Group)

Abstract

In this paper we address the problem of automatically discovering optimal tactics in a combat scenario in which two opposing sides control a number of fighting units. Our approach is based on the evolution of behaviour trees, combined with simulation-based evaluation of solutions to drive the evolution. Our behaviour trees use a small set of possible actions that can be assigned to a combat unit, along with standard behaviour tree constructs and a novel approach for selecting which action from the tree is performed. A set of test scenarios was designed for which an optimal strategy is known from the literature. These scenarios were used to explore and evaluate our approach. The results indicate that it is possible, from the small set of possible unit actions, for a complex strategy to emerge through evolution. Combat units with different capabilities were observed exhibiting coordinated team work and exploiting aspects of the environment.

Suggested Citation

  • Martin Masek & Chiou Peng Lam & Luke Kelly & Martin Wong, 2023. "Discovering optimal strategy in tactical combat scenarios through the evolution of behaviour trees," Annals of Operations Research, Springer, vol. 320(2), pages 901-936, January.
  • Handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04225-7
    DOI: 10.1007/s10479-021-04225-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04225-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04225-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    2. Lam, Chiou-Peng & Masek, Martin & Kelly, Luke & Papasimeon, Michael & Benke, Lyndon, 2019. "A simheuristic approach for evolving agent behaviour in the exploration for novel combat tactics," Operations Research Perspectives, Elsevier, vol. 6(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    3. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    4. Mohammad Peyman & Pedro J. Copado & Rafael D. Tordecilla & Leandro do C. Martins & Fatos Xhafa & Angel A. Juan, 2021. "Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems," Energies, MDPI, vol. 14(19), pages 1-26, October.
    5. Andrés Martínez-Reyes & Carlos L. Quintero-Araújo & Elyn L. Solano-Charris, 2021. "Supplying Personal Protective Equipment to Intensive Care Units during the COVID-19 Outbreak in Colombia. A Simheuristic Approach Based on the Location-Routing Problem," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    6. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.
    7. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    8. Omer Ozkan & Sezgin Kilic, 2023. "UAV routing by simulation-based optimization approaches for forest fire risk mitigation," Annals of Operations Research, Springer, vol. 320(2), pages 937-973, January.
    9. José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    10. José Lemus-Romani & Marcelo Becerra-Rozas & Broderick Crawford & Ricardo Soto & Felipe Cisternas-Caneo & Emanuel Vega & Mauricio Castillo & Diego Tapia & Gino Astorga & Wenceslao Palma & Carlos Castro, 2021. "A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems," Mathematics, MDPI, vol. 9(22), pages 1-41, November.
    11. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    12. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    13. Kennette M. Arboiz & Sotero O. Malayao Jr., 2024. "A Simulation-based Guided Inquiry Laboratory Package in Teaching Mirrors and Lenses for Grade 10 Learners," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 2558-2567, June.
    14. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    15. Lehner, Roland, 2023. "Cross-Supply Chain Collaboration Platform for Pallet Management," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138753, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Louis Anthony Cox, 2020. "Answerable and Unanswerable Questions in Risk Analysis with Open‐World Novelty," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2144-2177, November.
    17. Mohamed Hussein & Abdelrahman E. E. Eltoukhy & Amos Darko & Amr Eltawil, 2021. "Simulation-Optimization for the Planning of Off-Site Construction Projects: A Comparative Study of Recent Swarm Intelligence Metaheuristics," Sustainability, MDPI, vol. 13(24), pages 1-41, December.
    18. Yagmur S. Gök & Silvia Padrón & Maurizio Tomasella & Daniel Guimarans & Cemalettin Ozturk, 2023. "Constraint-based robust planning and scheduling of airport apron operations through simheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 795-830, January.
    19. Ruddy Guerrero & Adrian Serrano-Hernandez & Jose Pascual & Javier Faulin, 2022. "Simulation Model for Wire Harness Design in the Car Production Line Optimization Using the SimPy Library," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    20. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2019. "Dynamic pricing for vehicle ferries: Using packing and simulation to optimize revenues," European Journal of Operational Research, Elsevier, vol. 273(1), pages 288-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04225-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.