IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v319y2022i2d10.1007_s10479-021-04001-7.html
   My bibliography  Save this article

Efficiency and fairness criteria in the assignment of students to projects

Author

Listed:
  • Nahid Rezaeinia

    (NHH Norwegian School of Economics)

  • Julio César Góez

    (NHH Norwegian School of Economics)

  • Mario Guajardo

    (NHH Norwegian School of Economics)

Abstract

Teamwork has increasingly become more popular in educational environments. With the also increasing mobility trends in the educational sector, internationalization and other diversity features have gained importance in the structure of teams. In this paper, we discuss an assignment problem arising in the allocation of students to business projects in a master program in Norway. Among other problem features, the students state their preferences on the projects they most want to conduct. There are also requirements from the companies that propose the projects and from the program administration. We develop a bi-objective approach to consider efficiency and fairness criteria in this assignment problem. We test the model using real data of 2017 and 2018, in joint collaboration with the administrative staff of the program. In light of the good results, our proposed solutions have been implemented in practice in 2019 and 2020. The implementation of these solutions have been beneficial for the administration, the students, and the companies.

Suggested Citation

  • Nahid Rezaeinia & Julio César Góez & Mario Guajardo, 2022. "Efficiency and fairness criteria in the assignment of students to projects," Annals of Operations Research, Springer, vol. 319(2), pages 1717-1735, December.
  • Handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-021-04001-7
    DOI: 10.1007/s10479-021-04001-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04001-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04001-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rex Cutshall & Srinagesh Gavirneni & Kenneth Schultz, 2007. "Indiana University’s Kelley School of Business Uses Integer Programming to Form Equitable, Cohesive Student Teams," Interfaces, INFORMS, vol. 37(3), pages 265-276, June.
    2. Leo Lopes & Meredith Aronson & Gary Carstensen & Cole Smith, 2008. "Optimization Support for Senior Design Project Assignments," Interfaces, INFORMS, vol. 38(6), pages 448-464, December.
    3. Dmitry Krass & Anton Ovchinnikov, 2006. "The University of Toronto’s Rotman School of Management Uses Management Science to Create MBA Study Groups," Interfaces, INFORMS, vol. 36(2), pages 126-137, April.
    4. Binyamin Krauss & Jon Lee & Daniel Newman, 2013. "Optimizing the Assignment of Students to Classes in an Elementary School," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 39-44, September.
    5. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2012. "On the Efficiency-Fairness Trade-off," Management Science, INFORMS, vol. 58(12), pages 2234-2250, December.
    6. Nicosia, Gaia & Pacifici, Andrea & Pferschy, Ulrich, 2017. "Price of Fairness for allocating a bounded resource," European Journal of Operational Research, Elsevier, vol. 257(3), pages 933-943.
    7. Thomas L. Magnanti & Karthik Natarajan, 2018. "Allocating Students to Multidisciplinary Capstone Projects Using Discrete Optimization," Interfaces, INFORMS, vol. 48(3), pages 204-216, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Bowers & Melissa R. Bowers & Nana Bryan & Paolo Letizia & Spencer Murphy, 2023. "Forming Student Teams to Incorporate Soft Skills and Commonality of Schedule," Interfaces, INFORMS, vol. 53(2), pages 111-127, March.
    2. Binyamin Krauss & Jon Lee & Daniel Newman, 2013. "Optimizing the Assignment of Students to Classes in an Elementary School," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 39-44, September.
    3. Stephen Mahar & Wayne Winston & P. Daniel Wright, 2013. "Eli Lilly and Company Uses Integer Programming to Form Volunteer Teams in Impoverished Countries," Interfaces, INFORMS, vol. 43(3), pages 268-284, May-June.
    4. Ansari, Azadeh & Farrokhvar, Leily & Kamali, Behrooz, 2021. "Integrated student to school assignment and school bus routing problem for special needs students," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Thomas L. Magnanti & Karthik Natarajan, 2018. "Allocating Students to Multidisciplinary Capstone Projects Using Discrete Optimization," Interfaces, INFORMS, vol. 48(3), pages 204-216, June.
    6. Schulz, Arne, 2021. "The balanced maximally diverse grouping problem with block constraints," European Journal of Operational Research, Elsevier, vol. 294(1), pages 42-53.
    7. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    8. Arne Schulz, 2023. "The balanced maximally diverse grouping problem with integer attribute values," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-27, July.
    9. Theresa M. Roeder & Robert M. Saltzman, 2014. "Schedule-Based Group Assignment Using Constraint Programming," INFORMS Transactions on Education, INFORMS, vol. 14(2), pages 63-72, February.
    10. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    11. Rachmilevitch, Shiran, 2015. "Nash bargaining with (almost) no rationality," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 107-109.
    12. Chen, Violet Xinying & Hooker, J.N., 2022. "Combining leximax fairness and efficiency in a mathematical programming model," European Journal of Operational Research, Elsevier, vol. 299(1), pages 235-248.
    13. Spencer Leitch & Zhiyuan Wei, 2024. "Improving spatial access to healthcare facilities: an integrated approach with spatial analysis and optimization modeling," Annals of Operations Research, Springer, vol. 341(2), pages 1057-1074, October.
    14. Gudmundsson, Jens & Hougaard, Jens Leth & Platz, Trine Tornøe, 2023. "Decentralized task coordination," European Journal of Operational Research, Elsevier, vol. 304(2), pages 851-864.
    15. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    16. Christopher Garcia, 2019. "Practice Summary: Managing Capacity at the University of Mary Washington’s College of Business," Interfaces, INFORMS, vol. 49(2), pages 167-171, March.
    17. Emin Karagözoğlu & Kerim Keskin, 2015. "A Tale of Two Bargaining Solutions," Games, MDPI, vol. 6(2), pages 1-14, June.
    18. Claus-Jochen Haake & Cheng-Zhong Qin, 2018. "On unification of solutions to the bargaining problem," Working Papers CIE 113, Paderborn University, CIE Center for International Economics.
    19. Anna Bogomolnaia & Hervé Moulin & Fedor Sandomirskiy, 2022. "On the Fair Division of a Random Object," Management Science, INFORMS, vol. 68(2), pages 1174-1194, February.
    20. Hongzhe Zhang & Xiaohang Zhao & Xiao Fang & Bintong Chen, 2024. "Proactive Resource Request for Disaster Response: A Deep Learning-Based Optimization Model," Information Systems Research, INFORMS, vol. 35(2), pages 528-550, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-021-04001-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.