IDEAS home Printed from https://ideas.repec.org/p/zur/econwp/017.html
   My bibliography  Save this paper

Testing for monotonicity in expected asset returns

Author

Listed:
  • Joseph P. Romano
  • Michael Wolf

Abstract

Many postulated relations in finance imply that expected asset returns strictly increase in an underlying characteristic. To examine the validity of such a claim, one needs to take the entire range of the characteristic into account, as is done in the recent proposal of Patton and Timmermann (2010). But their test is only a test for the direction of monotonicity, since it requires the relation to be monotonic from the outset: either weakly decreasing under the null or strictly increasing under the alternative. When the relation is non-monotonic or weakly increasing, the test can break down and falsely ‘establish’ a strictly increasing relation with high probability. We offer some alternative tests that do not share this problem. The behavior of the various tests is illustrated via Monte Carlo studies. We also present empirical applications to real data.

Suggested Citation

  • Joseph P. Romano & Michael Wolf, 2011. "Testing for monotonicity in expected asset returns," ECON - Working Papers 017, Department of Economics - University of Zurich, revised Jan 2013.
  • Handle: RePEc:zur:econwp:017
    as

    Download full text from publisher

    File URL: https://www.zora.uzh.ch/id/eprint/48143/1/econwp017.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    2. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers 05/16, Institute for Fiscal Studies.
    3. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Annals of Operations Research, Springer, vol. 288(1), pages 181-221, May.
    4. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    5. Wan-Ni Lai & Claire Y. T. Chen & Edward W. Sun, 2022. "Risk factor extraction with quantile regression method," Annals of Operations Research, Springer, vol. 316(2), pages 1543-1572, September.
    6. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    7. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.

    More about this item

    Keywords

    Bootstrap; CAPM; monotonicity tests; non-monotonic relations;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:econwp:017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Severin Oswald (email available below). General contact details of provider: https://edirc.repec.org/data/seizhch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.