IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v315y2022i2d10.1007_s10479-021-04010-6.html
   My bibliography  Save this article

Approximation of continuous random variables for the evaluation of the reliability parameter of complex stress–strength models

Author

Listed:
  • Alessandro Barbiero

    (Università degli Studi di Milano)

  • Asmerilda Hitaj

    (Università degli Studi dell’Insubria)

Abstract

In many management science or economic applications, it is common to represent the key uncertain inputs as continuous random variables. However, when analytic techniques fail to provide a closed-form solution to a problem or when one needs to reduce the computational load, it is often necessary to resort to some problem-specific approximation technique or approximate each given continuous probability distribution by a discrete distribution. Many discretization methods have been proposed so far; in this work, we revise the most popular techniques, highlighting their strengths and weaknesses, and empirically investigate their performance through a comparative study applied to a well-known engineering problem, formulated as a stress–strength model, with the aim of weighting up their feasibility and accuracy in recovering the value of the reliability parameter, also with reference to the number of discrete points. The results overall reward a recently introduced method as the best performer, which derives the discrete approximation as the numerical solution of a constrained non-linear optimization, preserving the first two moments of the original distribution. This method provides more accurate results than an ad-hoc first-order approximation technique. However, it is the most computationally demanding as well and the computation time can get even larger than that required by Monte Carlo approximation if the number of discrete points exceeds a certain threshold.

Suggested Citation

  • Alessandro Barbiero & Asmerilda Hitaj, 2022. "Approximation of continuous random variables for the evaluation of the reliability parameter of complex stress–strength models," Annals of Operations Research, Springer, vol. 315(2), pages 1573-1598, August.
  • Handle: RePEc:spr:annopr:v:315:y:2022:i:2:d:10.1007_s10479-021-04010-6
    DOI: 10.1007/s10479-021-04010-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04010-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04010-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    2. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
    3. Tanaka, Ken’ichiro & Toda, Alexis Akira, 2013. "Discrete approximations of continuous distributions by maximum entropy," Economics Letters, Elsevier, vol. 118(3), pages 445-450.
    4. Christofides, A. & Tanyi, B. & Christofides, S. & Whobrey, D. & Christofides, N., 1999. "The optimal discretization of probability density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(4), pages 475-486, October.
    5. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    6. Bernard Colin & François Dubeau & Hussein Khreibani & Jules Tibeiro, 2013. "Optimal Quantization of the Support of a Continuous Multivariate Distribution based on Mutual Information," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 453-473, October.
    7. Zhao, Jing & Han, ChongZhao & Wei, Bin & Han, DeQiang, 2012. "A novel Univariate Marginal Distribution Algorithm based discretization algorithm," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2001-2007.
    8. Barbiero, Alessandro, 2012. "A general discretization procedure for reliability computation in complex stress–strength models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1667-1676.
    9. Allen C. Miller, III & Thomas R. Rice, 1983. "Discrete Approximations of Probability Distributions," Management Science, INFORMS, vol. 29(3), pages 352-362, March.
    10. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    2. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    3. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    4. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    5. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    7. Fadhil Y. Al-Aboosi & Mahmoud M. El-Halwagi, 2019. "A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty," Sustainability, MDPI, vol. 11(18), pages 1-39, September.
    8. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.
    9. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    10. Ignacio Rios & Andres Weintraub & Roger J.-B. Wets, 2016. "Building a stochastic programming model from scratch: a harvesting management example," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 189-199, February.
    11. Kenneth T. Bogen, 1995. "Methods to Approximate Joint Uncertainty and Variability in Risk," Risk Analysis, John Wiley & Sons, vol. 15(3), pages 411-419, June.
    12. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    13. Alexis Akira Toda, 2021. "Data-Based Automatic Discretization of Nonparametric Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1217-1235, April.
    14. De Reyck, Bert & Degraeve, Zeger & Vandenborre, Roger, 2008. "Project options valuation with net present value and decision tree analysis," European Journal of Operational Research, Elsevier, vol. 184(1), pages 341-355, January.
    15. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    16. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    17. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    18. Alessandro Barbiero & Asmerilda Hitaj, 2023. "Discrete approximations of continuous probability distributions obtained by minimizing Cramér-von Mises-type distances," Statistical Papers, Springer, vol. 64(5), pages 1669-1697, October.
    19. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    20. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:315:y:2022:i:2:d:10.1007_s10479-021-04010-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.