IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v313y2022i1d10.1007_s10479-021-04295-7.html
   My bibliography  Save this article

Technology, price instruments and energy intensity: a study of firms in the manufacturing sector of the Indian economy

Author

Listed:
  • Santosh Kumar Sahu

    (Indian Institute of Technology Madras)

  • Prantik Bagchi

    (Indian Institute of Technology Madras)

  • Ajay Kumar

    (EMLYON Business School)

  • Kim Hua Tan

    (Nottingham University Business School)

Abstract

We identify factors influencing energy efficiency and the role of price instruments such as tax and technology use in reducing energy intensity at the firm level. We use data from 2001 to 2015 for India's manufacturing sector from the Centre for Monitoring Indian Economy. Our result strongly suggests that R&D and productivity have a positive impact on achieving energy efficiency. In such a case, at least one-to-one correspondence between the tax and energy intensity may help promote renewable energy use if they are subsidized and allowed to come under the provision of tax credit or tax exemption. Since price instruments do not produce any revenue recycling effect, policymakers can trade-off between increasing corporate tax and generating employment. Therefore, environmental regulations should strictly relate to increase energy efficiency and bring the manufacturing sector out of the productivity dilemma. Also, as evidence from the empirical analysis, there is an urgent need to substitute vintage capital with new capital and better technology. In addition to the existing liberalization policies, the Government must design green domestic policies for the manufacturing sector and map them with FDI and trade. As the polluted firms are energy-intensive, “Performance, Achievement and Trade” (PAT) policies need to focus on these firms.

Suggested Citation

  • Santosh Kumar Sahu & Prantik Bagchi & Ajay Kumar & Kim Hua Tan, 2022. "Technology, price instruments and energy intensity: a study of firms in the manufacturing sector of the Indian economy," Annals of Operations Research, Springer, vol. 313(1), pages 319-339, June.
  • Handle: RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-021-04295-7
    DOI: 10.1007/s10479-021-04295-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04295-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04295-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dale W. Jorgenson, 1998. "Growth, Volume 2: Energy, the Environment, and Economic Growth," MIT Press Books, The MIT Press, edition 1, volume 2, number 0262100746, April.
    2. Samargandi, Nahla, 2019. "Energy intensity and its determinants in OPEC countries," Energy, Elsevier, vol. 186(C).
    3. repec:bla:econom:v:38:y:1971:i:149:p:1-27 is not listed on IDEAS
    4. Catherine Co & John List, 2004. "Is foreign direct investment attracted to 'knowledge creators'?," Applied Economics, Taylor & Francis Journals, vol. 36(11), pages 1143-1149.
    5. Adom, Philip Kofi, 2015. "Asymmetric impacts of the determinants of energy intensity in Nigeria," Energy Economics, Elsevier, vol. 49(C), pages 570-580.
    6. Mathew P. Abraham & Ankur A. Kulkarni, 2020. "Price-coupling games and the generation expansion planning problem," Annals of Operations Research, Springer, vol. 295(1), pages 1-19, December.
    7. Sarah Ben Amor & Anissa Frini & Gilles Reinhardt, 2020. "Preface: multiple criteria decision making for sustainable decisions," Annals of Operations Research, Springer, vol. 293(2), pages 401-403, October.
    8. Montalbano, P. & Nenci, S., 2019. "Energy efficiency, productivity and exporting: Firm-level evidence in Latin America," Energy Economics, Elsevier, vol. 79(C), pages 97-110.
    9. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    10. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    11. Acheampong, Alex O. & Amponsah, Mary & Boateng, Elliot, 2020. "Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies," Energy Economics, Elsevier, vol. 88(C).
    12. Joseph, Kelli L., 2010. "The politics of power: Electricity reform in India," Energy Policy, Elsevier, vol. 38(1), pages 503-511, January.
    13. Tamazian, Artur & Chousa, Juan Piñeiro & Vadlamannati, Krishna Chaitanya, 2009. "Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries," Energy Policy, Elsevier, vol. 37(1), pages 246-253, January.
    14. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    15. Fırat Emir & Festus Victor Bekun, 2019. "Energy intensity, carbon emissions, renewable energy, and economic growth nexus: New insights from Romania," Energy & Environment, , vol. 30(3), pages 427-443, May.
    16. Richter, Philipp M. & Schiersch, Alexander, 2017. "CO2 emission intensity and exporting: Evidence from firm-level data," European Economic Review, Elsevier, vol. 98(C), pages 373-391.
    17. Kang Park, 2003. "Patterns and strategies of Foreign Direct Investment: the case of Japanese firms," Applied Economics, Taylor & Francis Journals, vol. 35(16), pages 1739-1746.
    18. Sheila M. Olmstead & Robert N. Stavins, 2006. "An International Policy Architecture for the Post-Kyoto Era," American Economic Review, American Economic Association, vol. 96(2), pages 35-38, May.
    19. Erik Dietzenbacher & Kakali Mukhopadhyay, 2007. "An Empirical Examination of the Pollution Haven Hypothesis for India: Towards a Green Leontief Paradox?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(4), pages 427-449, April.
    20. Tibor Scitovsky, 1954. "Two Concepts of External Economies," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 143-143.
    21. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    22. Coria, Jessica & Kyriakopoulou, Efthymia, 2018. "Environmental policy, technology adoption and the size distribution of firms," Energy Economics, Elsevier, vol. 72(C), pages 470-485.
    23. Prantik Bagchi & Santosh Kumar Sahu, 2020. "Energy Intensity, Productivity and Pollution Loads: Empirical Evidence from Manufacturing Sector of India," Studies in Microeconomics, , vol. 8(2), pages 194-211, December.
    24. Xiaobo Shen & Boqiang Lin & Wei Wu, 2019. "R&D Efforts, Total Factor Productivity, and the Energy Intensity in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(11), pages 2566-2588, September.
    25. Ning Zhang & Weijie Zhang, 2020. "Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China?," Annals of Operations Research, Springer, vol. 290(1), pages 145-168, July.
    26. Tajudeen, Ibrahim A. & Wossink, Ada & Banerjee, Prasenjit, 2018. "How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 200-221.
    27. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    28. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    29. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    30. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    31. Albert G. Z. Hu & Gary H. Jefferson & Qian Jinchang, 2005. "R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 780-786, November.
    32. Fouad El Ouardighi & Eugene Khmelnitsky & Marc Leandri, 2020. "Production-based pollution versus deforestation: optimal policy with state-independent and-dependent environmental absorption efficiency restoration process," Annals of Operations Research, Springer, vol. 292(1), pages 1-26, September.
    33. repec:reg:rpubli:353 is not listed on IDEAS
    34. Sahu, Santosh & Narayanan, K, 2010. "Determinants of Energy Intensity in Indian Manufacturing Industries: A Firm Level Analysis," MPRA Paper 21646, University Library of Munich, Germany.
    35. Huang, Junbing & Chen, Xiang, 2020. "Domestic R&D activities, technology absorption ability, and energy intensity in China," Energy Policy, Elsevier, vol. 138(C).
    36. Santosh Kumar Sahu & Himani Sharma, 2016. "Productivity, Energy Intensity and Output: A Unit Level Analysis of the Indian Manufacturing Sector," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 283-300, December.
    37. Olmstead, Sheila & Stavins, Robert, 2006. "An International Architecture for the Post-Kyoto Era," Working Paper Series rwp06-009, Harvard University, John F. Kennedy School of Government.
    38. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    39. Cole, Matthew A., 2004. "Trade, the pollution haven hypothesis and the environmental Kuznets curve: examining the linkages," Ecological Economics, Elsevier, vol. 48(1), pages 71-81, January.
    40. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    41. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    42. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Yahya Algül & Deniz Erenel, 2024. "The Impact of R&D Expenditures on Regional Energy Intensity in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 546-557, September.
    3. Arup Roy & Ranjan DasGupta, 2024. "Economic Development, Energy Consumption, and Environmental Deterioration: A Non-Linear Evidence from India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(3), pages 721-747, September.
    4. Mikhail G. Kuzyk & Liudmila S. Ruzhanskaya, 2024. "Factors of Energy Transition of Manufacturing Companies Regarding their Inclusion in Global Value Chains," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(3), pages 642-673.
    5. Anton Nugent & Dragana Radicic, 2023. "The Impact of Environmental Management on Labour Productivity," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
    6. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    2. Ofori, Isaac K. & Gbolonyo, Emmanuel & Ojong, Nathanael, 2022. "Towards Inclusive Green Growth in Africa: Critical energy efficiency synergies and governance thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 365, pages 1-48.
    3. John A. Jinapor & Shafic Suleman & Richard Stephens Cromwell, 2023. "Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference?," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    4. Yahya Algül & Deniz Erenel, 2024. "The Impact of R&D Expenditures on Regional Energy Intensity in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 546-557, September.
    5. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    6. Waldemar Marz, 2019. "Complex dimensions of climate policy: the role of political economy, capital markets, and urban form," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 85.
    7. Liu, Fei & Zhang, Xudong & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Asymmetric and moderating role of industrialisation and technological innovation on energy intensity: Evidence from BRICS economies," Renewable Energy, Elsevier, vol. 198(C), pages 1364-1372.
    8. Bashir, Muhammad Adnan & Sheng, Bin & Doğan, Buhari & Sarwar, Suleman & Shahzad, Umer, 2020. "Export product diversification and energy efficiency: Empirical evidence from OECD countries," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 232-243.
    9. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    10. Hansjürgens, Bernd, 2008. "Internationale Klimapolitik nach Kyoto: Architekturen und Institutionen," UFZ Discussion Papers 10/2008, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    12. Achim Voss, 2019. "The Adverse Effect of Energy-Efficiency Policy," Working Papers 2019.13, Fondazione Eni Enrico Mattei.
    13. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    14. Trinh, Hai Hong & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Vo, Diem Thi Hong, 2022. "Examining the heterogeneity of financial development in the energy-environment nexus in the era of climate change: Novel evidence around the world," Energy Economics, Elsevier, vol. 116(C).
    15. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    16. Böhringer, Christoph & Rivers, Nicholas, 2021. "The energy efficiency rebound effect in general equilibrium," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    17. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    18. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    19. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    20. Fullerton, Don & Ta, Chi L., 2020. "Costs of energy efficiency mandates can reverse the sign of rebound," Journal of Public Economics, Elsevier, vol. 188(C).

    More about this item

    Keywords

    Energy efficiency; Technology; Productivity dilemma;
    All these keywords.

    JEL classification:

    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-021-04295-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.