IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i2d10.1007_s10479-020-03870-8.html
   My bibliography  Save this article

Multi-objective enhanced interval optimization problem

Author

Listed:
  • P. Kumar

    (SRM Institute of Science and Technology)

  • A. K. Bhurjee

    (VIT Bhopal University)

Abstract

In this paper, we consider a multiple objective optimization problem whose decision variables and parameters are intervals. Existence of solution of this problem is studied by parameterizing the intervals. A methodology is developed to find the $$t\omega $$ t ω -efficient solution of the problem. The original problem is transformed to an equivalent deterministic problem and the relation between solutions of both is established. Finally, the methodology is verified in numerical examples.

Suggested Citation

  • P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03870-8
    DOI: 10.1007/s10479-020-03870-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03870-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03870-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    2. Gabriel R. Bitran, 1980. "Linear Multiple Objective Problems with Interval Coefficients," Management Science, INFORMS, vol. 26(7), pages 694-706, July.
    3. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    4. P. Kumar & G. Panda & U.C. Gupta, 2016. "An interval linear programming approach for portfolio selection model," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(1/2), pages 149-164.
    5. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    6. Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
    7. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    8. A. K. Bhurjee & G. Panda, 2016. "Sufficient optimality conditions and duality theory for interval optimization problem," Annals of Operations Research, Springer, vol. 243(1), pages 335-348, August.
    9. A. Bhurjee & G. Panda, 2012. "Efficient solution of interval optimization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 273-288, December.
    10. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    11. Ajay Kumar Bhurjee & Geetanjali Panda, 2019. "Parametric multi-objective fractional programming problem with interval uncertainty," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 35(1), pages 132-145.
    12. Dorota Kuchta, 2011. "A concept of a robust solution of a multicriterial linear programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 605-613, December.
    13. Chanas, Stefan & Kuchta, Dorota, 1996. "Multiobjective programming in optimization of interval objective functions -- A generalized approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 594-598, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    2. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    3. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.
    4. Mrinal Jana & Geetanjali Panda, 2018. "$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 165-186, March.
    5. P. Kumar & G. Panda, 2017. "Solving nonlinear interval optimization problem using stochastic programming technique," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 752-765, December.
    6. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
    7. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    8. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    9. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    10. Jiang, C. & Zhang, Z.G. & Zhang, Q.F. & Han, X. & Xie, H.C. & Liu, J., 2014. "A new nonlinear interval programming method for uncertain problems with dependent interval variables," European Journal of Operational Research, Elsevier, vol. 238(1), pages 245-253.
    11. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
    12. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    13. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    14. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    15. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    16. A. K. Bhurjee & G. Panda, 2016. "Sufficient optimality conditions and duality theory for interval optimization problem," Annals of Operations Research, Springer, vol. 243(1), pages 335-348, August.
    17. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    18. Wang, Song, 2024. "Pricing European call options with interval-valued volatility and interest rate," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    19. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    20. Muhammad Bilal Khan & Savin Treanțǎ & Mohamed S. Soliman & Kamsing Nonlaopon & Hatim Ghazi Zaini, 2022. "Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings," Mathematics, MDPI, vol. 10(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03870-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.