IDEAS home Printed from https://ideas.repec.org/a/ids/ijores/v27y2016i1-2p149-164.html
   My bibliography  Save this article

An interval linear programming approach for portfolio selection model

Author

Listed:
  • P. Kumar
  • G. Panda
  • U.C. Gupta

Abstract

Uncertainty plays an important role in predicting the future earning of the assets in the financial market and it is generally measured in terms of probability. But in some cases, it would be a good idea for an investor to state the expected returns on assets in the form of closed intervals. Therefore, in this paper, we consider a portfolio selection problem wherein expected return of any asset, risk level and proportion of total investment on assets are in the form of interval, and obtain an optimum (best) portfolio. Such portfolio gives the total expected return and proportion of total investment on assets in the form of interval. The proposed portfolio model is solved by considering an equivalent linear programming problem, where all the parameters of the objective function and constraints as well as decision variables are expressed in form of intervals. The procedure gives a strongly feasible optimal interval solution of such problem based on partial order relation between intervals. Efficacy of the results is demonstrated by means of numerical examples.

Suggested Citation

  • P. Kumar & G. Panda & U.C. Gupta, 2016. "An interval linear programming approach for portfolio selection model," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(1/2), pages 149-164.
  • Handle: RePEc:ids:ijores:v:27:y:2016:i:1/2:p:149-164
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=78463
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    2. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    3. Elif Garajová & Milan Hladík & Miroslav Rada, 2019. "Interval linear programming under transformations: optimal solutions and optimal value range," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 601-614, September.
    4. P. Kumar & G. Panda, 2017. "Solving nonlinear interval optimization problem using stochastic programming technique," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 752-765, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijores:v:27:y:2016:i:1/2:p:149-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=170 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.