IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i1p245-253.html
   My bibliography  Save this article

A new nonlinear interval programming method for uncertain problems with dependent interval variables

Author

Listed:
  • Jiang, C.
  • Zhang, Z.G.
  • Zhang, Q.F.
  • Han, X.
  • Xie, H.C.
  • Liu, J.

Abstract

This paper proposes a new nonlinear interval programming method that can be used to handle uncertain optimization problems when there are dependencies among the interval variables. The uncertain domain is modeled using a multidimensional parallelepiped interval model. The model depicts single-variable uncertainty using a marginal interval and depicts the degree of dependencies among the interval variables using correlation angles and correlation coefficients. Based on the order relation of interval and the possibility degree of interval, the uncertain optimization problem is converted to a deterministic two-layer nesting optimization problem. The affine coordinate is then introduced to convert the uncertain domain of a multidimensional parallelepiped interval model to a standard interval uncertain domain. A highly efficient iterative algorithm is formulated to generate an efficient solution for the multi-layer nesting optimization problem after the conversion. Three computational examples are given to verify the effectiveness of the proposed method.

Suggested Citation

  • Jiang, C. & Zhang, Z.G. & Zhang, Q.F. & Han, X. & Xie, H.C. & Liu, J., 2014. "A new nonlinear interval programming method for uncertain problems with dependent interval variables," European Journal of Operational Research, Elsevier, vol. 238(1), pages 245-253.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:245-253
    DOI: 10.1016/j.ejor.2014.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    2. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    3. Wu, X.Y. & Huang, G.H. & Liu, L. & Li, J.B., 2006. "An interval nonlinear program for the planning of waste management systems with economies-of-scale effects--A case study for the region of Hamilton, Ontario, Canada," European Journal of Operational Research, Elsevier, vol. 171(2), pages 349-372, June.
    4. Chanas, Stefan & Kuchta, Dorota, 1996. "Multiobjective programming in optimization of interval objective functions -- A generalized approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 594-598, November.
    5. Wu, Hsien-Chung, 2007. "The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function," European Journal of Operational Research, Elsevier, vol. 176(1), pages 46-59, January.
    6. Kall, P., 1982. "Stochastic programming," European Journal of Operational Research, Elsevier, vol. 10(2), pages 125-130, June.
    7. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mei-Jing & Wang, Ying-Ming & Li, Ling-Hui & Chen, Sheng-Qun, 2017. "A general evidential reasoning algorithm for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1005-1015.
    2. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    2. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    3. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    4. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    5. T. Antczak, 2018. "Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 205-224, January.
    6. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    7. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    8. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    9. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    10. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    11. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    12. Md Sadikur Rahman & Ali Akbar Shaikh & Irfan Ali & Asoke Kumar Bhunia & Armin Fügenschuh, 2021. "A Theoretical Framework for Optimality Conditions of Nonlinear Type-2 Interval-Valued Unconstrained and Constrained Optimization Problems Using Type-2 Interval Order Relations," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    13. Abhijit Baidya & Uttam Kumar Bera & Manoranjan Maiti, 2016. "The grey linear programming approach and its application to multi-objective multi-stage solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 500-522, September.
    14. Sevastjanov, P.V. & Róg, P., 2003. "Fuzzy modeling of manufacturing and logistic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(6), pages 569-585.
    15. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    16. Luhandjula, M.K. & Rangoaga, M.J., 2014. "An approach for solving a fuzzy multiobjective programming problem," European Journal of Operational Research, Elsevier, vol. 232(2), pages 249-255.
    17. Mrinal Jana & Geetanjali Panda, 2018. "$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 165-186, March.
    18. R. Osuna-Gómez & B. Hernández-Jiménez & Y. Chalco-Cano & G. Ruiz-Garzón, 2018. "Different optimum notions for fuzzy functions and optimality conditions associated," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 177-193, June.
    19. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    20. Tadeusz Antczak, 2023. "Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:1:p:245-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.