IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i2p657-670.html
   My bibliography  Save this article

Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis

Author

Listed:
  • Villanueva-Cantillo, Jeyms
  • Munoz-Marquez, Manuel

Abstract

The selection of input and output variables is a key step in evaluating the relative efficiency of decision-making units (DMUs) in data envelopment analysis (DEA). In this paper, we present a methodology based on Monte Carlo simulations and bootstrapping for calculating the critical values of relevance measures in variable selection methods in DEA. Additionally, we define a set of metrics to study the methods’ performance when using such critical values. We conducted an extensive simulation study, applying the proposed methodology to two variable selection methods in 28 single-output model specifications (i.e., different number of inputs and DMUs in the DEA model) under multiple scenarios, varying factors related to the functional form of the production function, the probability of an input being relevant in the model, the probability distribution of the inputs, and the theoretical efficiencies of the DMUs. The simulation study shows that (i) our proposed methodology yields consistent results for the two methods studied, in terms of the generated critical values and the performance metrics, and (ii) for most model specifications, the critical values can be estimated with a linear model with a high adjusted R2, using factors related to the input probability distribution and the probability of an input being relevant as independent variables. Furthermore, we describe and compare the performance of the two methods studied, provide guidelines for using our methodology and the results presented in this paper, and propose suggestions for future research.

Suggested Citation

  • Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:657-670
    DOI: 10.1016/j.ejor.2020.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720307293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillip Fanchon, 2003. "Variable selection for dynamic measures of efficiency in the computer industry," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 9(3), pages 175-188, August.
    2. Mehdi Toloo & Mona Barat & Atefeh Masoumzadeh, 2015. "Selective measures in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 623-642, March.
    3. Inmaculada Sirvent & José L. Ruiz & Fernando Borrás & Jesús T. Pastor, 2005. "A Monte Carlo Evaluation Of Several Tests For The Selection Of Variables In Dea Models," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 325-343.
    4. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    5. Toloo, Mehdi & Babaee, Seddigheh, 2015. "On variable reductions in data envelopment analysis with an illustrative application to a gas company," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 527-533.
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    7. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    8. Jirawan Jitthavech, 2016. "Variable elimination in nested DEA models: a statistical approach," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(3), pages 389-410.
    9. Sharma, Mithun J. & Yu, Song Jin, 2015. "Stepwise regression data envelopment analysis for variable reduction," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 126-134.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. John Ruggiero, 2005. "Impact Assessment Of Input Omission On Dea," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 359-368.
    12. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    13. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    14. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    15. Kao, Ling-Jing & Lu, Chi-Jie & Chiu, Chih-Chou, 2011. "Efficiency measurement using independent component analysis and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 210(2), pages 310-317, April.
    16. Holland, D. S. & Lee, S. T., 2002. "Impacts of random noise and specification on estimates of capacity derived from data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 137(1), pages 10-21, February.
    17. Perelman, Sergio & Santín, Daniel, 2009. "How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement," European Journal of Operational Research, Elsevier, vol. 199(1), pages 303-310, November.
    18. N Adler & B Golany, 2002. "Including principal component weights to improve discrimination in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 985-991, September.
    19. Wagner, Janet M. & Shimshak, Daniel G., 2007. "Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives," European Journal of Operational Research, Elsevier, vol. 180(1), pages 57-67, July.
    20. Lin, Tzu-Yu & Chiu, Sheng-Hsiung, 2013. "Using independent component analysis and network DEA to improve bank performance evaluation," Economic Modelling, Elsevier, vol. 32(C), pages 608-616.
    21. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    22. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    23. Mehdi Toloo & Mona Barat & Atefeh Masoumzadeh, 2015. "Erratum to: Selective measures in data envelopment analysis," Annals of Operations Research, Springer, vol. 235(1), pages 821-821, December.
    24. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
    2. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    3. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    4. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    5. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    6. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    7. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2021. "Selecting data envelopment analysis models: A data-driven application to EU countries," Omega, Elsevier, vol. 101(C).
    8. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    9. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    10. Anna Łozowicka & Bartłomiej Lach, 2022. "CI-DEA: A Way to Improve the Discriminatory Power of DEA—Using the Example of the Efficiency Assessment of the Digitalization in the Life of the Generation 50+," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    11. Qiwei Xie & Yuanyuan Li & Lizheng Wang & Chao Liu, 2018. "Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1053-1068, December.
    12. Bojiang Yang & Youliang Zhang & Hongjun Zhang & Rui Zhang & Baoyu Xu, 2016. "Factor-specific Malmquist productivity index based on common weights DEA," Operational Research, Springer, vol. 16(1), pages 51-70, April.
    13. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    14. Benítez-Peña, Sandra & Bogetoft, Peter & Romero Morales, Dolores, 2020. "Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach," Omega, Elsevier, vol. 96(C).
    15. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    16. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    17. Karagiannis, Roxani & Karagiannis, Giannis, 2023. "Nonparametric estimates of price efficiency for the Greek infant milk market: Curing the curse of dimensionality with shannon entropy," Economic Modelling, Elsevier, vol. 121(C).
    18. Lee, Chia-Yen & Cai, Jia-Ying, 2020. "LASSO variable selection in data envelopment analysis with small datasets," Omega, Elsevier, vol. 91(C).
    19. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    20. Lin, Tzu-Yu & Chiu, Sheng-Hsiung, 2013. "Using independent component analysis and network DEA to improve bank performance evaluation," Economic Modelling, Elsevier, vol. 32(C), pages 608-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:657-670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.