IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v53y2002i9d10.1057_palgrave.jors.2601400.html
   My bibliography  Save this article

Including principal component weights to improve discrimination in data envelopment analysis

Author

Listed:
  • N Adler

    (Hebrew University of Jerusalem)

  • B Golany

    (Israel Institute of Technology)

Abstract

This research further develops the combined use of principal component analysis (PCA) and data envelopment analysis (DEA). The aim is to reduce the curse of dimensionality that occurs in DEA when there is an excessive number of inputs and outputs in relation to the number of decision-making units. Three separate PCA–DEA formulations are developed in the paper utilising the results of PCA to develop objective, assurance region type constraints on the DEA weights. The first model applies PCA to grouped data representing similar themes, such as quality or environmental measures. The second model, if needed, applies PCA to all inputs and separately to all outputs, thus further strengthening the discrimination power of DEA. The third formulation searches for a single set of global weights with which to fully rank all observations. In summary, it is clear that the use of principal components can noticeably improve the strength of DEA models.

Suggested Citation

  • N Adler & B Golany, 2002. "Including principal component weights to improve discrimination in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 985-991, September.
  • Handle: RePEc:pal:jorsoc:v:53:y:2002:i:9:d:10.1057_palgrave.jors.2601400
    DOI: 10.1057/palgrave.jors.2601400
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601400
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:53:y:2002:i:9:d:10.1057_palgrave.jors.2601400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.