IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12887-d936429.html
   My bibliography  Save this article

Variable Neighborhood Search for Multi-Cycle Medical Waste Recycling Vehicle Routing Problem with Time Windows

Author

Listed:
  • Wanting Zhang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Ming Zeng

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Peng Guo

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Kun Wen

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

Background: Improper disposal of urban medical waste is likely to cause a series of neglective impacts. Therefore, we have to consider how to improve the efficiency of urban medical waste recycling and lowering carbon emissions when facing disposal. Methods: This paper considers the multi-cycle medical waste recycling vehicle routing problem with time windows for preventing and reducing the risk of medical waste transportation. First, a mixed-integer linear programming model is formulated to minimize the total cost consisting of the vehicle dispatch cost and the transportation costs. In addition, an improved neighborhood search algorithm is designed for handling large-sized problems. In the algorithm, the initial solution is constructed using the Clarke–Wright algorithm in the first stage, and the variable neighborhood search algorithm with a simulated annealing strategy is introduced for exploring a better solution in the second stage. Results: The computational results demonstrate the performance of the suggested algorithm. In addition, the total cost of recycling in the periodic strategy is lower than with the single-cycle strategy. Conclusions: The proposed model and algorithm have the management improvement value of the studied medical waste recycling vehicle routing problem.

Suggested Citation

  • Wanting Zhang & Ming Zeng & Peng Guo & Kun Wen, 2022. "Variable Neighborhood Search for Multi-Cycle Medical Waste Recycling Vehicle Routing Problem with Time Windows," IJERPH, MDPI, vol. 19(19), pages 1-25, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12887-:d:936429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikkel M. Sigurd & Nina L. Ulstein & Bjørn Nygreen & David M. Ryan, 2005. "Ship Scheduling with Recurring Visits and Visit Separation Requirements," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 225-245, Springer.
    2. Yangkun Xia & Zhuo Fu & Sang-Bing Tsai & Jiangtao Wang, 2018. "A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack—From a Green Operation Perspective," IJERPH, MDPI, vol. 15(5), pages 1-12, May.
    3. Hailin Wu & Fengming Tao & Bo Yang, 2020. "Optimization of Vehicle Routing for Waste Collection and Transportation," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    4. A. L. Kok & C. M. Meyer & H. Kopfer & J. M. J. Schutten, 2010. "A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and European Community Social Legislation," Transportation Science, INFORMS, vol. 44(4), pages 442-454, November.
    5. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    6. Zahra Pooranian & Mohammad Shojafar & Jemal H. Abawajy & Ajith Abraham, 2015. "An efficient meta-heuristic algorithm for grid computing," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 413-434, October.
    7. Nikzamir, Mohammad & Baradaran, Vahid, 2020. "A healthcare logistic network considering stochastic emission of contamination: Bi-objective model and solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Roberto Cantu-Funes & M. Angélica Salazar-Aguilar & Vincent Boyer, 2018. "Multi-depot periodic vehicle routing problem with due dates and time windows," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(2), pages 296-306, February.
    9. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Liang & Xu, Xiang & Shao, Feng & Shao, Hu & Ge, Yanxin, 2024. "A multi-objective optimization model for medical waste recycling network design under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    2. Vincent F. Yu & Panca Jodiawan & Shih-Wei Lin & Winy Fara Nadira & Anna Maria Sri Asih & Le Nguyen Hoang Vinh, 2024. "Using Simulated Annealing to Solve the Multi-Depot Waste Collection Vehicle Routing Problem with Time Window and Self-Delivery Option," Mathematics, MDPI, vol. 12(3), pages 1-22, February.
    3. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    4. Asvin Goel & Thibaut Vidal, 2014. "Hours of Service Regulations in Road Freight Transport: An Optimization-Based International Assessment," Transportation Science, INFORMS, vol. 48(3), pages 391-412, August.
    5. Alcaraz, Juan J. & Caballero-Arnaldos, Luis & Vales-Alonso, Javier, 2019. "Rich vehicle routing problem with last-mile outsourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 263-286.
    6. Marie-Eve Rancourt & Jean-François Cordeau & Gilbert Laporte, 2013. "Long-Haul Vehicle Routing and Scheduling with Working Hour Rules," Transportation Science, INFORMS, vol. 47(1), pages 81-107, February.
    7. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    8. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    9. repec:dar:wpaper:62383 is not listed on IDEAS
    10. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    11. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    12. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    13. Asif Iqbal & Abdullah Yasar & Abdul-Sattar Nizami & Rafia Haider & Faiza Sharif & Imran Ali Sultan & Amtul Bari Tabinda & Aman Anwer Kedwaii & Muhammad Murtaza Chaudhary, 2022. "Municipal Solid Waste Collection and Haulage Modeling Design for Lahore, Pakistan: Transition toward Sustainability and Circular Economy," Sustainability, MDPI, vol. 14(23), pages 1-39, December.
    14. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    15. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    16. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    17. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    18. Masson, Renaud & Lahrichi, Nadia & Rousseau, Louis-Martin, 2016. "A two-stage solution method for the annual dairy transportation problem," European Journal of Operational Research, Elsevier, vol. 251(1), pages 36-43.
    19. Z Fu & R Eglese & L Y O Li, 2008. "A unified tabu search algorithm for vehicle routing problems with soft time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 663-673, May.
    20. Weikang Fang & Zailin Guan & Peiyue Su & Dan Luo & Linshan Ding & Lei Yue, 2022. "Multi-Objective Material Logistics Planning with Discrete Split Deliveries Using a Hybrid NSGA-II Algorithm," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    21. Saira Latif & Torbjörn Lindbäck & Magnus Karlberg & Johanna Wallsten, 2022. "Bale Collection Path Planning Using an Autonomous Vehicle with Neighborhood Collection Capabilities," Agriculture, MDPI, vol. 12(12), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12887-:d:936429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.