IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v283y2019i1d10.1007_s10479-018-3114-6.html
   My bibliography  Save this article

Stochastic facility location model for drones considering uncertain flight distance

Author

Listed:
  • Dongwook Kim

    (Seoul National University)

  • Kyungsik Lee

    (Seoul National University)

  • Ilkyeong Moon

    (Seoul National University)

Abstract

This paper developed a stochastic modelling framework to determine the locations and transport capacities of drone facilities for effectively coping with a disaster. The developed model is applicable to emergency planning that incorporates drones into humanitarian logistics while taking into account the uncertain characteristics of drone operating conditions. Because of the importance of speedy decision making in disaster management, a heuristic algorithm was developed using Benders decomposition, which generates time-efficient high-quality solutions. The linear programming rounding method was used to make the algorithm efficient. Computational experiments demonstrated the superiority of the developed algorithm, and a sensitivity analysis was carried out to gain additional insights.

Suggested Citation

  • Dongwook Kim & Kyungsik Lee & Ilkyeong Moon, 2019. "Stochastic facility location model for drones considering uncertain flight distance," Annals of Operations Research, Springer, vol. 283(1), pages 1283-1302, December.
  • Handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-018-3114-6
    DOI: 10.1007/s10479-018-3114-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3114-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3114-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    2. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    3. Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
    4. S Meng & B-C Shia, 2013. "Set covering location models with stochastic critical distances," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 945-958, July.
    5. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    6. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    7. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    8. Marín, Alfredo & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M. & Saldanha-da-Gama, Francisco, 2018. "Multi-period stochastic covering location problems: Modeling framework and solution approach," European Journal of Operational Research, Elsevier, vol. 268(2), pages 432-449.
    9. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    10. Goldberg, Jeffrey & Dietrich, Robert & Ming Chen, Jen & Mitwasi, M. George & Valenzuela, Terry & Criss, Elizabeth, 1990. "Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ," European Journal of Operational Research, Elsevier, vol. 49(3), pages 308-324, December.
    11. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    12. Oleg Burdakov & Jonas Kvarnström & Patrick Doherty, 2017. "Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles," Annals of Operations Research, Springer, vol. 249(1), pages 163-174, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayan Prasad Nagendra & Gopalakrishnan Narayanamurthy & Roger Moser, 2022. "Management of humanitarian relief operations using satellite big data analytics: the case of Kerala floods," Annals of Operations Research, Springer, vol. 319(1), pages 885-910, December.
    2. Dukkanci, Okan & Koberstein, Achim & Kara, Bahar Y., 2023. "Drones for relief logistics under uncertainty after an earthquake," European Journal of Operational Research, Elsevier, vol. 310(1), pages 117-132.
    3. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    4. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    5. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    6. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    7. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    2. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    3. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    4. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Wusheng Liu & Wang Li & Qing Zhou & Qian Die & Yan Yang, 2022. "The optimization of the "UAV-vehicle" joint delivery route considering mountainous cities," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-21, March.
    7. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    8. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    9. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    11. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development," Post-Print hal-04381308, HAL.
    12. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    13. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Bakker, Hannah & Diehlmann, Florian & Wiens, Marcus & Nickel, Stefan & Schultmann, Frank, 2023. "School or parking lot? Selecting locations for points of distribution in urban disasters," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    15. Sadeghi, Mohammad & Yaghoubi, Saeed, 2024. "Optimization models for cloud seeding network design and operations," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1146-1167.
    16. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    17. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    18. Wenjuan Hou & Tao Fang & Zhi Pei & Qiao-Chu He, 2020. "Integrated Design of Unmanned Aerial Mobility Network: A Data-Driven Risk-Averse Approach," Papers 2004.13000, arXiv.org.
    19. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    20. Kerim Dogan & Mumtaz Karatas & Ertan Yakici, 2020. "A model for locating preventive health care facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1091-1121, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-018-3114-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.