IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i7p945-958.html
   My bibliography  Save this article

Set covering location models with stochastic critical distances

Author

Listed:
  • S Meng

    (School of Economics, Beijing Wuzi University, China)

  • B-C Shia

    (Fu Jen Catholic University, Taiwan)

Abstract

This paper formulates a new version of set covering models by introducing a customer-determined stochastic critical distance. In this model, all services are provided at the sites of facilities, and customers have to go to the facility sites to obtain the services. Due to the randomness of their critical distance, customers patronize a far or near facility with a probability. The objective is to find a minimum cost set of facilities so that every customer is covered by at least one facility with an average probability greater than a given level α. We consider an instance of the problem by embedding the exponential effect of distance into the model. An algorithm based on two searching paths is proposed for solutions to the instance. Experiments show that the algorithm performs well for problems with greater α, and the experimental results for smaller α are reported and analysed.

Suggested Citation

  • S Meng & B-C Shia, 2013. "Set covering location models with stochastic critical distances," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 945-958, July.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:7:p:945-958
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n7/pdf/jors2012113a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n7/full/jors2012113a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongwook Kim & Kyungsik Lee & Ilkyeong Moon, 2019. "Stochastic facility location model for drones considering uncertain flight distance," Annals of Operations Research, Springer, vol. 283(1), pages 1283-1302, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:7:p:945-958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.