IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v278y2019i1d10.1007_s10479-016-2330-1.html
   My bibliography  Save this article

Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach

Author

Listed:
  • Babak Daneshvar Rouyendegh

    (Atilim University
    Auburn University)

  • Asil Oztekin

    (University of Massachusetts Lowell)

  • Joseph Ekong

    (Auburn University)

  • Ali Dag

    (University of South Dakota)

Abstract

The goal of this study is to present a DEA-based fuzzy multi-criteria decision making model for firms in the health care industry in order to enhance their business performance. The study demonstrates a real-life use of the proposed model, mainly designed for hospitals. Data envelopment analysis enhanced with fuzzy analytic hierarchy process are collectively utilized to quantify the data and structure the model in decision-making. The juxtaposition of the two methods is used to compile a ranked list of multiple proxies containing diverse input and output variables which occur in two stages. This hybrid model provides several benefits, one of which is the ability to make the most appropriate decision considering the value of the weights determined by the data from the hybrid model.

Suggested Citation

  • Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
  • Handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-016-2330-1
    DOI: 10.1007/s10479-016-2330-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2330-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2330-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Friedman, Lea & Sinuany-Stern, Zilla, 1997. "Scaling units via the canonical correlation analysis in the DEA context," European Journal of Operational Research, Elsevier, vol. 100(3), pages 629-637, August.
    3. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    4. Babak Daneshvar Rouyendegh, 2011. "The DEA and Intuitionistic Fuzzy TOPSIS Approach to Departments' Performances: A Pilot Study," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-16, December.
    5. Thomas L. Saaty, 2006. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 1-26, Springer.
    6. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    7. Merja Halme & Tarja Joro & Pekka Korhonen & Seppo Salo & Jyrki Wallenius, 1999. "A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis," Management Science, INFORMS, vol. 45(1), pages 103-115, January.
    8. Rouselle Lavado & Emilyn Cabanda, 2009. "The efficiency of health and education expenditures in the Philippines," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(3), pages 275-291, September.
    9. Miika Linna, 1998. "Measuring hospital cost efficiency with panel data models," Health Economics, John Wiley & Sons, Ltd., vol. 7(5), pages 415-427, August.
    10. Juan Du & Justin Wang & Yao Chen & Shin-Yi Chou & Joe Zhu, 2014. "Incorporating health outcomes in Pennsylvania hospital efficiency: an additive super-efficiency DEA approach," Annals of Operations Research, Springer, vol. 221(1), pages 161-172, October.
    11. Reuben Elan & Verma Bharat Bhushan & Bhat Ramesh, 2001. "Hospital Efficiency: An Empirical Analysis of District and Grant-in-Aid Hospitals in Gujarat," IIMA Working Papers WP2001-07-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0, March.
    13. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    14. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    15. Kontodimopoulos, Nick & Niakas, Dimitris, 2005. "Efficiency measurement of hemodialysis units in Greece with data envelopment analysis," Health Policy, Elsevier, vol. 71(2), pages 195-204, February.
    16. Joe Zhu, 2015. "DEA Based Benchmarking Models," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 10, pages 291-308, Springer.
    17. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esther Jose & Puneet Agarwal & Jun Zhuang & Jose Swaminathan, 2023. "A multi-criteria decision making approach to evaluating the performance of Indian railway zones," Annals of Operations Research, Springer, vol. 325(2), pages 1133-1168, June.
    2. Yu Shi & Anyu Yu & Huong Ngo Higgins & Joe Zhu, 2021. "Shared and unsplittable performance links in network DEA," Annals of Operations Research, Springer, vol. 303(1), pages 507-528, August.
    3. Diogo Ferraz & Enzo Barberio Mariano & Patricia Regina Manzine & Herick Fernando Moralles & Paulo César Morceiro & Bruno Guimarães Torres & Mariana Rodrigues Almeida & João Carlos Soares de Mello & Da, 2021. "COVID Health Structure Index: The Vulnerability of Brazilian Microregions," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(1), pages 197-215, November.
    4. Ramkrishna S. Bharsakade & Padmanava Acharya & L. Ganapathy & Manoj K. Tiwari, 2021. "A lean approach to healthcare management using multi criteria decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 610-635, September.
    5. Pourmahmoud, Jafar & Bagheri, Narges, 2023. "Uncertain Malmquist productivity index: An application to evaluate healthcare systems during COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    6. Pengyue Wu & Jing Ma & Xiaoyu Guo, 2022. "Efficiency evaluation and influencing factors analysis of fiscal and taxation policies: A method combining DEA-AHP and CD function," Annals of Operations Research, Springer, vol. 309(1), pages 325-345, February.
    7. Jorge Antunes & Abdollah Hadi-Vencheh & Ali Jamshidi & Yong Tan & Peter Wanke, 2022. "Bank efficiency estimation in China: DEA-RENNA approach," Annals of Operations Research, Springer, vol. 315(2), pages 1373-1398, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    2. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    3. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    4. Harald Dyckhoff, 2018. "Multi-criteria production theory: foundation of non-financial and sustainability performance evaluation," Journal of Business Economics, Springer, vol. 88(7), pages 851-882, September.
    5. Qian Zhang & Huaxing Zhang & Dan Zhao & Baodong Cheng & Chang Yu & Yanli Yang, 2019. "Does Urban Sprawl Inhibit Urban Eco-Efficiency? Empirical Studies of Super-Efficiency and Threshold Regression Models," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    6. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    7. Fabienne Miller & Justin Wang & Joe Zhu & Ya Chen & Jason Hockenberry, 2017. "Investigation of the Impact of the Massachusetts Health Care Reform on Hospital Costs and Quality of Care," Annals of Operations Research, Springer, vol. 250(1), pages 129-146, March.
    8. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    9. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    10. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    11. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    12. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    13. Chowdhury, Hedayet & Zelenyuk, Valentin, 2016. "Performance of hospital services in Ontario: DEA with truncated regression approach," Omega, Elsevier, vol. 63(C), pages 111-122.
    14. Ruiz, José L. & Segura, José V. & Sirvent, Inmaculada, 2015. "Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities," European Journal of Operational Research, Elsevier, vol. 242(2), pages 594-605.
    15. Simar, Leopold & Zelenyuk, Valentin, 2018. "Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores," LIDAM Discussion Papers ISBA 2018020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    17. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    18. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    19. Tsou, Chi-Ming & Huang, Deng-Yuan, 2010. "On some methods for performance ranking and correspondence analysis in the DEA context," European Journal of Operational Research, Elsevier, vol. 203(3), pages 771-783, June.
    20. Gouveia, M.C. & Dias, L.C. & Antunes, C.H. & Boucinha, J. & Inácio, C.F., 2015. "Benchmarking of maintenance and outage repair in an electricity distribution company using the value-based DEA method," Omega, Elsevier, vol. 53(C), pages 104-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-016-2330-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.