IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v325y2023i2d10.1007_s10479-022-04866-2.html
   My bibliography  Save this article

A multi-criteria decision making approach to evaluating the performance of Indian railway zones

Author

Listed:
  • Esther Jose

    (University at Buffalo)

  • Puneet Agarwal

    (California Polytechnic State University)

  • Jun Zhuang

    (University at Buffalo)

  • Jose Swaminathan

    (Vellore Institute of Technology)

Abstract

The Indian Railways is India’s biggest employer and undeniably influences the country’s transportation network, economy, and social and cultural systems. The network is split into zones for operational reasons. It is vital to evaluate these railway networks to identify their strengths and shortcomings and to improve their performance. Past works often use Data Envelopment Analysis to evaluate railway services. Our contribution lies in the inclusion of several aspects not previously considered, such as (i) both tangible and intangible criteria, (ii) the hierarchical nature of the problem, and (iii) additional useful criteria and data to analyze the performance of the zones, including physical assets, operating ratio, accidents, comfort, travel experience, flexibility, transparency, etc. We use the novel Hierarchical Fuzzy Axiomatic Design method to evaluate the performance of sixteen zones in the Indian Railways since it suits our problem well. We find that the Southern Railway zone performs best, while the Northeast Frontier zone is ranked last. We also identify the strengths and weaknesses of all railway zones.

Suggested Citation

  • Esther Jose & Puneet Agarwal & Jun Zhuang & Jose Swaminathan, 2023. "A multi-criteria decision making approach to evaluating the performance of Indian railway zones," Annals of Operations Research, Springer, vol. 325(2), pages 1133-1168, June.
  • Handle: RePEc:spr:annopr:v:325:y:2023:i:2:d:10.1007_s10479-022-04866-2
    DOI: 10.1007/s10479-022-04866-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04866-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04866-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Ming-Miin, 2008. "Assessing the technical efficiency, service effectiveness, and technical effectiveness of the world's railways through NDEA analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1283-1294, December.
    2. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    3. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    4. Katharina Gompf & Marzia Traverso & Jörg Hetterich, 2021. "Using Analytical Hierarchy Process (AHP) to Introduce Weights to Social Life Cycle Assessment of Mobility Services," Sustainability, MDPI, vol. 13(3), pages 1-10, January.
    5. Yao Chen & Wade D. Cook & Sungmook Lim, 2019. "Preface: DEA and its applications in operations and data analytics," Annals of Operations Research, Springer, vol. 278(1), pages 1-4, July.
    6. Svetla Stoilova & Nolberto Munier & Martin Kendra & Tomáš Skrúcaný, 2020. "Multi-Criteria Evaluation of Railway Network Performance in Countries of the TEN-T Orient–East Med Corridor," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    7. Paolo Buonanno & Leone Leonida, 2006. "Education and crime: evidence from Italian regions," Applied Economics Letters, Taylor & Francis Journals, vol. 13(11), pages 709-713.
    8. Ho, William & Ma, Xin, 2018. "The state-of-the-art integrations and applications of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 267(2), pages 399-414.
    9. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    10. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    11. Jitsuzumi, Toshiya & Nakamura, Akihiro, 2010. "Causes of inefficiency in Japanese railways: Application of DEA for managers and policymakers," Socio-Economic Planning Sciences, Elsevier, vol. 44(3), pages 161-173, September.
    12. Surajit Nath & Bijan Sarkar, 2018. "Decision system framework for performance evaluation of advanced manufacturing technology under fuzzy environment," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 703-720, November.
    13. Bo Hsiao & LihChyun Shu & Ming-Miin Yu & Li-Kang Shen & Ding-Jiun Wang, 2017. "Performance evaluation of the Taiwan railway administration," Annals of Operations Research, Springer, vol. 259(1), pages 119-156, December.
    14. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le, Yiping & Oka, Minami & Kato, Hironori, 2022. "Efficiencies of the urban railway lines incorporating financial performance and in-vehicle congestion in the Tokyo Metropolitan Area," Transport Policy, Elsevier, vol. 116(C), pages 343-354.
    2. Jorge Antunes & Goodness C. Aye & Rangan Gupta & Peter Wanke & Yong Tan, 2020. "Endogenous Long-Term Productivity Performance in Advanced Countries: A Novel Two-Dimensional Fuzzy-Monte Carlo Approach," Working Papers 2020111, University of Pretoria, Department of Economics.
    3. Niu, Yanliang & Li, Xin & Zhang, Jiangxue & Deng, Xiaopeng & Chang, Yuan, 2023. "Efficiency of railway transport: A comparative analysis for 16 countries," Transport Policy, Elsevier, vol. 141(C), pages 42-53.
    4. Bo Hsiao & LihChyun Shu & Ming-Miin Yu & Li-Kang Shen & Ding-Jiun Wang, 2017. "Performance evaluation of the Taiwan railway administration," Annals of Operations Research, Springer, vol. 259(1), pages 119-156, December.
    5. Marchetti, Dalmo & Wanke, Peter, 2017. "Brazil's rail freight transport: Efficiency analysis using two-stage DEA and cluster-driven public policies," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 26-42.
    6. Bhatia, Vinod & Sharma, Seema, 2021. "Expense based performance analysis and resource rationalization: Case of Indian Railways," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    7. Marchetti, Dalmo & Wanke, Peter F., 2019. "Efficiency in rail transport: Evaluation of the main drivers through meta-analysis with resampling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 83-100.
    8. Mallikarjun, Sreekanth & Lewis, Herbert F. & Sexton, Thomas R., 2014. "Operational performance of U.S. public rail transit and implications for public policy," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 74-88.
    9. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    10. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    11. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    12. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    13. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    14. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    15. Azadi, Majid & Shabani, Amir & Khodakarami, Mohsen & Farzipoor Saen, Reza, 2015. "Reprint of “Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 22-36.
    16. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    17. Chen, Chih Cheng, 2017. "Measuring departmental and overall regional performance: applying the multi-activity DEA model to Taiwan׳s cities/counties," Omega, Elsevier, vol. 67(C), pages 60-80.
    18. Wey, Wann-Ming & Kang, Chao-Chung & Khan, Haider A., 2020. "Evaluating the effects of environmental factors and a transfer fare discount policy on the performance of an urban metro system," Transport Policy, Elsevier, vol. 97(C), pages 172-185.
    19. Mohsen Khodakarami & Amir Shabani & Reza Farzipoor Saen, 2016. "Concurrent estimation of efficiency, effectiveness and returns to scale," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1202-1220, April.
    20. Rakan Alyamani & Suzanna Long, 2020. "The Application of Fuzzy Analytic Hierarchy Process in Sustainable Project Selection," Sustainability, MDPI, vol. 12(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:325:y:2023:i:2:d:10.1007_s10479-022-04866-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.