IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v87y2023ipas0038012123000150.html
   My bibliography  Save this article

Uncertain Malmquist productivity index: An application to evaluate healthcare systems during COVID-19 pandemic

Author

Listed:
  • Pourmahmoud, Jafar
  • Bagheri, Narges

Abstract

Evaluation of healthcare systems, as a key organization providing different health services, is essential. This issue becomes more crucial when occurring crises such as a pandemic. They need to keep track of their success in the face of the crisis to assess the effects of policy changes and their capability to respond to new challenges. The Malmquist Productivity Index (MPI) is measured to analyze the causes of productivity change between two periods of time. The estimation of the traditional MPI requires reliable and detailed information on the inputs and outputs of decision-making units. However, there are a lot of situations where input and/or output may be imprecise. It is not manageable to reliably measure certain measurement indices, such as quality of treatment or system flexibility. For such cases, experts are invited to model their opinion. Uncertainty theory is a mathematical branch rationally dealing with belief degrees. The primary objective of this study is to apply MPI concept in the nonparametric approach of data envelopment analysis to calculate the efficiency of systems over different periods of time under uncertain conditions. Accordingly, we consider the MPI when inputs and outputs are belief degrees of experts. Furthermore, the sensitivity of the model is analyzed to determine the reliability of the results to the variation of variables. Finally, as an illustrative example, we explore longitudinal efficiency of healthcare systems during COVID-19 pandemic. According to the results of our model, the majority of the countries have improved in the second period which can be the result of efforts to improve pandemic preparedness. The decomposition of MPI into efficiency changes and technical changes indicates that the rise in productivity is entirely related to the progressive change of the production frontier related to policymaking. This application attempts to demonstrate how crucial it is to take uncertainties into account when comparing the performance of different systems over periods of time. The developed model enables us to consider the uncertainty existing in COVID-19 pandemic. The proposed model can handle more accurately the uncertainty during the pandemic. Thus, the result could be more reliable, which can benefit decision-makers in regard to performance improvement.

Suggested Citation

  • Pourmahmoud, Jafar & Bagheri, Narges, 2023. "Uncertain Malmquist productivity index: An application to evaluate healthcare systems during COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
  • Handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000150
    DOI: 10.1016/j.seps.2023.101522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123000150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharon Hadad & Yossi Hadad & Tzahit Simon-Tuval, 2013. "Determinants of healthcare system’s efficiency in OECD countries," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 253-265, April.
    2. Zahra Mohmmad Nejad & Alireza Ghaffari-Hadigheh, 2018. "A novel DEA model based on uncertainty theory," Annals of Operations Research, Springer, vol. 264(1), pages 367-389, May.
    3. Bruce Hollingsworth, 2008. "The measurement of efficiency and productivity of health care delivery," Health Economics, John Wiley & Sons, Ltd., vol. 17(10), pages 1107-1128, October.
    4. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    5. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    6. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    7. Henriques, C.O. & Gouveia, M.C., 2022. "Assessing the impact of COVID-19 on the efficiency of Portuguese state-owned enterprise hospitals," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    8. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    9. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. EMROUZNEJAD, Ali & TAVANA, Madjid & HATAMI-MARBINI, Adel, 2014. "The state of the art in fuzzy data envelopment analysis," LIDAM Reprints CORE 2543, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    13. Nurhafiza Md Hamzah & Ming-Miin Yu & Kok Fong See, 2021. "Assessing the efficiency of Malaysia health system in COVID-19 prevention and treatment response," Health Care Management Science, Springer, vol. 24(2), pages 273-285, June.
    14. Waichon Lio & Baoding Liu, 2018. "Uncertain data envelopment analysis with imprecisely observed inputs and outputs," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 357-373, September.
    15. Chiang Kao, 2017. "Network Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-3-319-31718-2, January.
    16. Dan Lupu & Ramona Tiganasu, 2022. "COVID-19 and the efficiency of health systems in Europe," Health Economics Review, Springer, vol. 12(1), pages 1-15, December.
    17. Varabyova, Yauheniya & Schreyögg, Jonas, 2013. "International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches," Health Policy, Elsevier, vol. 112(1), pages 70-79.
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    19. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    20. Goker, Nazli & Karsak, E.Ertugrul, 2021. "Two-stage common weight DEA-Based approach for performance evaluation with imprecise data," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    21. Omrani, Hashem & Emrouznejad, Ali & Shamsi, Meisam & Fahimi, Pegah, 2022. "Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    22. Angeliki Flokou & Vassilis Aletras & Dimitris Niakas, 2017. "A window-DEA based efficiency evaluation of the public hospital sector in Greece during the 5-year economic crisis," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-26, May.
    23. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    25. Diego Prior, 2006. "Efficiency and total quality management in health care organizations: A dynamic frontier approach," Annals of Operations Research, Springer, vol. 145(1), pages 281-299, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aparicio, Juan & Santín, Daniel, 2024. "Global and local technical changes: A new decomposition of the Malmquist productivity index using virtual units," Economic Modelling, Elsevier, vol. 134(C).
    2. Jeon, Jeonghwan & Suvitha, Krishnan & Arshad, Noreen Izza & Kalaiselvan, Samayan & Narayanamoorthy, Samayan & Ferrara, Massimiliano & Ahmadian, Ali, 2023. "A probabilistic hesitant fuzzy MCDM approach to evaluate India’s intervention strategies against the COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Şahin, Bayram & Göktaş, Tuna Aybike & Bölükbaşı, Ferdane Betül & Şenay Ulaş, Feyza, 2024. "The effect of COVID-19 pandemic on the efficiency of training and research hospitals in Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    2. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    3. Puertas, Rosa & Marti, Luisa & Guaita-Martinez, José M., 2020. "Innovation, lifestyle, policy and socioeconomic factors: An analysis of European quality of life," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    4. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    5. Dinesh R. Pai & Fatma Pakdil & Nasibeh Azadeh-Fard, 2024. "Applications of data envelopment analysis in acute care hospitals: a systematic literature review, 1984–2022," Health Care Management Science, Springer, vol. 27(2), pages 284-312, June.
    6. Margaréta Halická & Mária Trnovská, 2018. "Negative features of hyperbolic and directional distance models for technologies with undesirable outputs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 887-907, December.
    7. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    8. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    9. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    10. Kosycarz, Ewa & Dędys, Monika & Ekes, Maria & Wranik, Wiesława Dominika, 2023. "The effects of provider contract types and fiscal decentralization on the efficiency of the Polish hospital sector: A data envelopment analysis across 16 health regions," Health Policy, Elsevier, vol. 129(C).
    11. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    12. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    13. García-Alonso, Carlos R. & Salvador-Carulla, Luis & Fernández-Rodríguez, Vicente, 2015. "Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areasAuthor-Name: Torres-Jiménez, Mercedes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 525-535.
    14. Utsav Pandey & Sanjeet Singh, 2022. "Data envelopment analysis in hierarchical category structure with fuzzy boundaries," Annals of Operations Research, Springer, vol. 315(2), pages 1517-1549, August.
    15. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    16. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    17. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    18. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    19. Chien-Ming Chen & Magali A. Delmas, 2012. "Measuring Eco-Inefficiency: A New Frontier Approach," Operations Research, INFORMS, vol. 60(5), pages 1064-1079, October.
    20. Angelo Castaldo & Maria Alessandra Antonelli & Valeria De Bonis & Giorgia Marini, 2020. "Determinants of health sector efficiency: evidence from a two-step analysis on 30 OECD countries," Economics Bulletin, AccessEcon, vol. 40(2), pages 1651-1666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.