IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v273y2019i1d10.1007_s10479-017-2500-9.html
   My bibliography  Save this article

A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands

Author

Listed:
  • Z. Al Chami

    (Univ. Bourgogne Franche -Comté)

  • H. Manier

    (Univ. Bourgogne Franche -Comté)

  • M.-A. Manier

    (Univ. Bourgogne Franche -Comté)

Abstract

In pickup and delivery problems (PDPs), the aim is to transport loads from pickup locations (suppliers) to delivery locations (customers) using a set of vehicles while respecting a set of constraints. In this paper, we discuss a new variant of the PDP which has not been treated yet in the literature to our best knowledge. This new variant is the selective pickup and delivery problem with time windows and paired demands (SPDPTWPD). Its first specificity relies on the occurrence of time Windows, capacity and precedence constraints. In addition, it includes several depots and a fleet of vehicles, and the selective aspect must be taken into account. It means the choice of customers to be served when the global capacity of the vehicles is not sufficient. We proposed firstly a new mono-objective model to solve the SPDPTWPD. Then we tested our proposed algorithm on benchmark instances of near (less constrained) problems from the literature. Secondly, we have generated new instances adapted to the considered problem. Thirdly, we worked on a lexicographic approach to deal with the multi-objective aspect of our problem. The efficiency of our approaches is shown by the obtained results.

Suggested Citation

  • Z. Al Chami & H. Manier & M.-A. Manier, 2019. "A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands," Annals of Operations Research, Springer, vol. 273(1), pages 237-255, February.
  • Handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-017-2500-9
    DOI: 10.1007/s10479-017-2500-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2500-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2500-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    2. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    3. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    4. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    5. Baozhen Yao & Bin Yu & Ping Hu & Junjie Gao & Mingheng Zhang, 2016. "An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot," Annals of Operations Research, Springer, vol. 242(2), pages 303-320, July.
    6. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi, 2011. "An Exact Algorithm for the Pickup and Delivery Problem with Time Windows," Operations Research, INFORMS, vol. 59(2), pages 414-426, April.
    7. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    8. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    9. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    10. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    11. Harilaos N. Psaraftis, 1983. "An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows," Transportation Science, INFORMS, vol. 17(3), pages 351-357, August.
    12. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erfan Babaee Tirkolaee & Alireza Goli & Abbas Mardani, 2023. "A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems," Annals of Operations Research, Springer, vol. 324(1), pages 795-823, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    2. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    3. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    4. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    5. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Designing vehicle routes for a mix of different request types, under time windows and loading constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 303-317.
    6. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    7. Qin, Hu & Moriakin, Anton & Xu, Gangyan & Li, Jiliu, 2024. "The generator distribution problem for base stations during emergency power outage: A branch-and-price-and-cut approach," European Journal of Operational Research, Elsevier, vol. 318(3), pages 752-767.
    8. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    9. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    10. Qiu, Xiaoqiu & Feuerriegel, Stefan & Neumann, Dirk, 2017. "Making the most of fleets: A profit-maximizing multi-vehicle pickup and delivery selection problem," European Journal of Operational Research, Elsevier, vol. 259(1), pages 155-168.
    11. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    12. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    14. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    15. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    16. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    17. Dirk Männel & Andreas Bortfeldt, 2015. "A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints," FEMM Working Papers 150015, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    18. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    20. Männel, Dirk & Bortfeldt, Andreas, 2016. "A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 254(3), pages 840-858.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-017-2500-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.