IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v242y2016i2d10.1007_s10479-015-1792-x.html
   My bibliography  Save this article

An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot

Author

Listed:
  • Baozhen Yao

    (Dalian University of Technology)

  • Bin Yu

    (Dalian Maritime University)

  • Ping Hu

    (Dalian University of Technology)

  • Junjie Gao

    (Dalian University of Technology)

  • Mingheng Zhang

    (Dalian University of Technology)

Abstract

In this paper, a carton heterogeneous vehicle routing problem with a collection depot is presented, which can collaboratively pick the cartons from several carton factories to a collection depot and then from the depot to serve their corresponding customers by using of heterogeneous fleet. Since the carton heterogeneous vehicle routing problem with a collection depot is a very complex problem, particle swarm optimization (PSO) is used to solve the problem in this paper. To improve the performance of the PSO, a self-adaptive inertia weight and a local search strategy are used. At last, the model and the algorithm are illustrated with two test examples. The results show that the proposed PSO is an effective method to solve the multi-depot vehicle routing problem, and the carton heterogeneous vehicle routing problem with a collection depot. Moreover, the proposed model is feasible with a saving of about 28 % in total delivery cost and could obviously reduce the required number of vehicles when comparing to the actual instance.

Suggested Citation

  • Baozhen Yao & Bin Yu & Ping Hu & Junjie Gao & Mingheng Zhang, 2016. "An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot," Annals of Operations Research, Springer, vol. 242(2), pages 303-320, July.
  • Handle: RePEc:spr:annopr:v:242:y:2016:i:2:d:10.1007_s10479-015-1792-x
    DOI: 10.1007/s10479-015-1792-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1792-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1792-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    2. Crevier, Benoit & Cordeau, Jean-Francois & Laporte, Gilbert, 2007. "The multi-depot vehicle routing problem with inter-depot routes," European Journal of Operational Research, Elsevier, vol. 176(2), pages 756-773, January.
    3. Imran, Arif & Salhi, Said & Wassan, Niaz A., 2009. "A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 509-518, September.
    4. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2010. "An adaptive memory methodology for the vehicle routing problem with simultaneous pick-ups and deliveries," European Journal of Operational Research, Elsevier, vol. 202(2), pages 401-411, April.
    5. Gillett, Billy E & Johnson, Jerry G, 1976. "Multi-terminal vehicle-dispatch algorithm," Omega, Elsevier, vol. 4(6), pages 711-718.
    6. Qianxin Mu & Richard Eglese, 2013. "Disrupted capacitated vehicle routing problem with order release delay," Annals of Operations Research, Springer, vol. 207(1), pages 201-216, August.
    7. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
    8. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    9. Yu, Bin & Yang, Zhong Zhen, 2011. "An ant colony optimization model: The period vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 166-181, March.
    10. Graça Gonçalves & Luís Gouveia & Margarida Pato, 2014. "An improved decomposition-based heuristic to design a water distribution network for an irrigation system," Annals of Operations Research, Springer, vol. 219(1), pages 141-167, August.
    11. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    3. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    4. Wenxuan Shan & Qianqian Yan & Chao Chen & Mengjie Zhang & Baozhen Yao & Xuemei Fu, 2019. "Optimization of competitive facility location for chain stores," Annals of Operations Research, Springer, vol. 273(1), pages 187-205, February.
    5. Haiyang Yu & Shuai Yang & Zhihai Wu & Xiaolei Ma, 2018. "Vehicle trajectory reconstruction from automatic license plate reader data," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    6. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    7. Siru Chen, 2021. "Highway transportation optimization control system based on OD forecast information," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 748-756, August.
    8. Kai Li & Yunzhi Zhang & Wensi Wang & Yonglei Jiang & Hexin Zhang, 2022. "Spatial location of new foreign firms in Shanghai under the transformation of urban development," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 405-420, April.
    9. Kannan Govindan, 2016. "Evolutionary algorithms for supply chain management," Annals of Operations Research, Springer, vol. 242(2), pages 195-206, July.
    10. Zong, Fang & Tian, Yongda & He, Yanan & Tang, Jinjun & Lv, Jianyu, 2019. "Trip destination prediction based on multi-day GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 258-269.
    11. Zhen, Lu & Xia, Jun & Huang, Lin & Wu, Yiwei, 2020. "Bus tour-based routing and truck deployment for small-package shipping companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    12. Z. Al Chami & H. Manier & M.-A. Manier, 2019. "A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands," Annals of Operations Research, Springer, vol. 273(1), pages 237-255, February.
    13. L. Zhang & Y. P. Wang & J. Sun & B. Yu, 2019. "The sightseeing bus schedule optimization under Park and Ride System in tourist attractions," Annals of Operations Research, Springer, vol. 273(1), pages 587-605, February.
    14. Wang, Yong & Luo, Siyu & Fan, Jianxin & Zhen, Lu, 2024. "The multidepot vehicle routing problem with intelligent recycling prices and transportation resource sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    15. Xiaodan Wu & Ruichang Li & Chao-Hsien Chu & Richard Amoasi & Shan Liu, 2022. "Managing pharmaceuticals delivery service using a hybrid particle swarm intelligence approach," Annals of Operations Research, Springer, vol. 308(1), pages 653-684, January.
    16. Yangkun Xia & Zhuo Fu & Lijun Pan & Fenghua Duan, 2018. "Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    17. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    18. Shen, Chan & Sun, Yao & Bai, Zijian & Cui, Hongjun, 2021. "Real-time customized bus routes design with optimal passenger and vehicle matching based on column generation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Subrat Sarangi & Sudipta Sarangi & Nasim S. Sabounchi, 2023. "How managerial perspectives affect the optimal fleet size and mix model: a multi-objective approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 1-23, March.
    20. Baozhen Yao & Qianqian Yan & Mengjie Zhang & Yunong Yang, 2017. "Improved artificial bee colony algorithm for vehicle routing problem with time windows," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-18, September.
    21. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    2. B Yu & Z-Z Yang & J-X Xie, 2011. "A parallel improved ant colony optimization for multi-depot vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 183-188, January.
    3. Baozhen Yao & Chao Chen & Xiaolin Song & Xiaoli Yang, 2019. "Fresh seafood delivery routing problem using an improved ant colony optimization," Annals of Operations Research, Springer, vol. 273(1), pages 163-186, February.
    4. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    5. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    6. Wei Song & Shuailei Yuan & Yun Yang & Chufeng He, 2022. "A Study of Community Group Purchasing Vehicle Routing Problems Considering Service Time Windows," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    7. Themistoklis Stamadianos & Andromachi Taxidou & Magdalene Marinaki & Yannis Marinakis, 2024. "Swarm intelligence and nature inspired algorithms for solving vehicle routing problems: a survey," Operational Research, Springer, vol. 24(3), pages 1-45, September.
    8. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
    9. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    10. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    11. Emre Tokgöz & Samir Alwazzi & Theodore Trafalis, 2015. "A heuristic algorithm to solve the single-facility location routing problem on Riemannian surfaces," Computational Management Science, Springer, vol. 12(3), pages 397-415, July.
    12. Mesut Yavuz & Ismail Çapar, 2017. "Alternative-Fuel Vehicle Adoption in Service Fleets: Impact Evaluation Through Optimization Modeling," Transportation Science, INFORMS, vol. 51(2), pages 480-493, May.
    13. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    14. T R P Ramos & R C Oliveira, 2011. "Delimitation of service areas in reverse logistics networks with multiple depots," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1198-1210, July.
    15. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    16. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    17. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    18. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    19. Pandelis, D.G. & Karamatsoukis, C.C. & Kyriakidis, E.G., 2013. "Finite and infinite-horizon single vehicle routing problems with a predefined customer sequence and pickup and delivery," European Journal of Operational Research, Elsevier, vol. 231(3), pages 577-586.
    20. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:242:y:2016:i:2:d:10.1007_s10479-015-1792-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.