IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i1p155-168.html
   My bibliography  Save this article

Making the most of fleets: A profit-maximizing multi-vehicle pickup and delivery selection problem

Author

Listed:
  • Qiu, Xiaoqiu
  • Feuerriegel, Stefan
  • Neumann, Dirk

Abstract

Road freight transportation is a pillar of the modern economy. Despite the increasing competition, over 20% of all vehicles run empty on European roads. As a remedy, freight exchanges have been established to bridge such supply-demand imbalances, with the largest markets trading over 200,000 daily offers. Carriers searching for profit-maximizing freights on such markets face a Profit-Maximizing Pickup and Delivery Selection Problem (PPDSP) that has not yet been addressed in previous research. In this paper, we develop a novel graph search that branches on feasible routes for an exact solution and, based on this, we develop a randomized search heuristic for the single vehicle case, a greedy heuristic for the multi-vehicle case, and a Maximum Set Packing formulation for the case of homogeneous and heterogeneous fleets. Computational experiments show that most instances of the various setups can be solved optimally and much faster than the solution offered by the Gurobi optimizer. Both heuristics are highly efficient and the problem of fleets can be solved almost as quickly as the single vehicle case.

Suggested Citation

  • Qiu, Xiaoqiu & Feuerriegel, Stefan & Neumann, Dirk, 2017. "Making the most of fleets: A profit-maximizing multi-vehicle pickup and delivery selection problem," European Journal of Operational Research, Elsevier, vol. 259(1), pages 155-168.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:1:p:155-168
    DOI: 10.1016/j.ejor.2016.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716308244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marilène Cherkesly & Guy Desaulniers & Gilbert Laporte, 2015. "Branch-Price-and-Cut Algorithms for the Pickup and Delivery Problem with Time Windows and Last-in-First-Out Loading," Transportation Science, INFORMS, vol. 49(4), pages 752-766, November.
    2. Bernhard Fleischmann, 2005. "Distribution and Transport Planning," Springer Books, in: Hartmut Stadtler & Christoph Kilger (ed.), Supply Chain Management and Advanced Planning, edition 0, chapter 12, pages 229-244, Springer.
    3. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    4. Mladenović, Nenad & Urošević, Dragan & Hanafi, Saı¨d & Ilić, Aleksandar, 2012. "A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 270-285.
    5. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi, 2011. "An Exact Algorithm for the Pickup and Delivery Problem with Time Windows," Operations Research, INFORMS, vol. 59(2), pages 414-426, April.
    6. Faramroze G. Engineer & George L. Nemhauser & Martin W. P. Savelsbergh, 2011. "Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 105-119, February.
    7. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    8. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    9. Jörn Schönberger & Herbert Kopfer, 2005. "Planning the Incorporation of Logistics Service Providers to Fulfill Precedence- and Time Window-Constrained Transport Requests in a Most Profitable Way," Lecture Notes in Economics and Mathematical Systems, in: Bernhard Fleischmann & Andreas Klose (ed.), Distribution Logistics, pages 141-156, Springer.
    10. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    11. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    12. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    13. Masson, Renaud & Ropke, Stefan & Lehuédé, Fabien & Péton, Olivier, 2014. "A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes," European Journal of Operational Research, Elsevier, vol. 236(3), pages 849-862.
    14. Regan, A C & Song, Jiongjiong, 2003. "Combinatorial Auctions for Transportation Service Procurement: The Carrier Perspective," University of California Transportation Center, Working Papers qt7sq003mj, University of California Transportation Center.
    15. Erdogan, Günes & Cordeau, Jean-François & Laporte, Gilbert, 2010. "The Attractive Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 59-69, May.
    16. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    17. Goel, Asvin & Gruhn, Volker, 2008. "A General Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 650-660, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2020. "A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    2. Margaretha Gansterer & Murat Küçüktepe & Richard F. Hartl, 2017. "The multi-vehicle profitable pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 303-319, January.
    3. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    4. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    5. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    6. Cherkesly, Marilène & Desaulniers, Guy & Irnich, Stefan & Laporte, Gilbert, 2016. "Branch-price-and-cut algorithms for the pickup and delivery problem with time windows and multiple stacks," European Journal of Operational Research, Elsevier, vol. 250(3), pages 782-793.
    7. Margaretha Gansterer & Richard F. Hartl & Philipp E. H. Salzmann, 2018. "Exact solutions for the collaborative pickup and delivery problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 357-371, June.
    8. Ali Mehsin Alyasiry & Michael Forbes & Michael Bulmer, 2019. "An Exact Algorithm for the Pickup and Delivery Problem with Time Windows and Last-in-First-out Loading," Transportation Science, INFORMS, vol. 53(6), pages 1695-1705, November.
    9. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    10. Masson, Renaud & Ropke, Stefan & Lehuédé, Fabien & Péton, Olivier, 2014. "A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes," European Journal of Operational Research, Elsevier, vol. 236(3), pages 849-862.
    11. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    12. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    13. Sophie N. Parragh & Jorge Pinho de Sousa & Bernardo Almada-Lobo, 2015. "The Dial-a-Ride Problem with Split Requests and Profits," Transportation Science, INFORMS, vol. 49(2), pages 311-334, May.
    14. Julio C. Londoño & Rafael D. Tordecilla & Leandro do C. Martins & Angel A. Juan, 2021. "A biased-randomized iterated local search for the vehicle routing problem with optional backhauls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 387-416, July.
    15. Z. Al Chami & H. Manier & M.-A. Manier, 2019. "A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands," Annals of Operations Research, Springer, vol. 273(1), pages 237-255, February.
    16. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    17. Zhang, Li & Liu, Zhongshan & Yu, Bin & Long, Jiancheng, 2024. "A ridesharing routing problem for airport riders with electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    18. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    19. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    20. Du, Jianhui & Zhang, Zhiqin & Wang, Xu & Lau, Hoong Chuin, 2023. "A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:1:p:155-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.