IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v219y2012i3p698-706.html
   My bibliography  Save this article

Recent advances on the Discretizable Molecular Distance Geometry Problem

Author

Listed:
  • Lavor, Carlile
  • Liberti, Leo
  • Maculan, Nelson
  • Mucherino, Antonio

Abstract

The Molecular Distance Geometry Problem (MDGP) consists in finding an embedding in R3 of a nonnegatively weighted simple undirected graph with the property that the Euclidean distances between embedded adjacent vertices must be the same as the corresponding edge weights. The Discretizable Molecular Distance Geometry Problem (DMDGP) is a particular subset of the MDGP which can be solved using a discrete search occurring in continuous space; its main application is to find three-dimensional arrangements of proteins using Nuclear Magnetic Resonance (NMR) data. The model provided by the DMDGP, however, is too abstract to be directly applicable in proteomics. In the last five years our efforts have been directed towards adapting the DMDGP to be an ever closer model of the actual difficulties posed by the problem of determining protein structures from NMR data. This survey lists recent developments on DMDGP related research.

Suggested Citation

  • Lavor, Carlile & Liberti, Leo & Maculan, Nelson & Mucherino, Antonio, 2012. "Recent advances on the Discretizable Molecular Distance Geometry Problem," European Journal of Operational Research, Elsevier, vol. 219(3), pages 698-706.
  • Handle: RePEc:eee:ejores:v:219:y:2012:i:3:p:698-706
    DOI: 10.1016/j.ejor.2011.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711009945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Fidalgo & Douglas S. Gonçalves & Carlile Lavor & Leo Liberti & Antonio Mucherino, 2018. "A symmetry-based splitting strategy for discretizable distance geometry problems," Journal of Global Optimization, Springer, vol. 71(4), pages 717-733, August.
    2. Lavor, Carlile & Souza, Michael & Carvalho, Luiz M. & Gonçalves, Douglas S. & Mucherino, Antonio, 2021. "Improving the sampling process in the interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Farid Alizadeh & Douglas Gonçalves & Nathan Krislock & Leo Liberti, 2018. "Preface: Special issue dedicated to Distance Geometry," Journal of Global Optimization, Springer, vol. 72(1), pages 1-4, September.
    4. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2016. "Assigned and unassigned distance geometry: applications to biological molecules and nanostructures," 4OR, Springer, vol. 14(4), pages 337-376, December.
    5. Virginia Costa & Antonio Mucherino & Carlile Lavor & Andrea Cassioli & Luiz Carvalho & Nelson Maculan, 2014. "Discretization orders for protein side chains," Journal of Global Optimization, Springer, vol. 60(2), pages 333-349, October.
    6. Phil Duxbury & Carlile Lavor & Leo Liberti & Luiz Leduino Salles-Neto, 2022. "Unassigned distance geometry and molecular conformation problems," Journal of Global Optimization, Springer, vol. 83(1), pages 73-82, May.
    7. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2018. "Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures," Annals of Operations Research, Springer, vol. 271(1), pages 161-203, December.
    8. Martello, Silvano & Pinto Paixão, José M., 2012. "A look at the past and present of optimization – An editorial," European Journal of Operational Research, Elsevier, vol. 219(3), pages 638-640.
    9. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:219:y:2012:i:3:p:698-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.