IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v267y2018i1d10.1007_s10479-017-2570-8.html
   My bibliography  Save this article

Refinement of pure Pareto Nash equilibria in finite multicriteria games using preference relations

Author

Listed:
  • Naouel Yousfi-Halimi

    (University of Bejaia)

  • Mohammed Said Radjef

    (University of Bejaia)

  • Hachem Slimani

    (University of Bejaia)

Abstract

In this paper, we consider a noncooperative finite multicriteria two-person game G. We study the problem of refinement of Pareto Nash equilibria of G and we propose an approach based on modeling the preferences of the players by two binary relations. This approach follows three main steps: first, we associate to G another game $$\bar{G}$$ G ¯ defined by the two sets of strategies and two binary relations over the set of the strategy profiles, where each binary relation expresses the preferences of the corresponding player. Second, we define a Noncooperative Equilibrium $$\textit{NCE}$$ NCE for the game $$\bar{G}$$ G ¯ and we prove that every $$\textit{NCE}$$ NCE of $$\bar{G}$$ G ¯ is a Pareto Nash equilibrium of G. Third, we propose a procedure for finding the set of $$\textit{NCE}$$ NCE of $$\bar{G}$$ G ¯ independently of how the binary relations are constructed. Moreover, we give three ways to model the preferences of the players by using scalarization and the outranking methods ELECTRE I and PROMETHEE II. All the steps of the proposed approach are completely illustrated through an accompanying example.

Suggested Citation

  • Naouel Yousfi-Halimi & Mohammed Said Radjef & Hachem Slimani, 2018. "Refinement of pure Pareto Nash equilibria in finite multicriteria games using preference relations," Annals of Operations Research, Springer, vol. 267(1), pages 607-628, August.
  • Handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-017-2570-8
    DOI: 10.1007/s10479-017-2570-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2570-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2570-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    2. Mark Voorneveld & Sofia Grahn & Martin Dufwenberg, 2000. "Ideal equilibria in noncooperative multicriteria games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(1), pages 65-77, September.
    3. F.R. Fernández & J. Puerto & L. Monroy, 1998. "Two-person non-zero-sum gamesas multicriteria goal games," Annals of Operations Research, Springer, vol. 84(0), pages 195-208, December.
    4. van Damme, E.E.C., 2015. "Game theory : Noncooperative games," Other publications TiSEM ff518f2b-501f-4d99-817b-c, Tilburg University, School of Economics and Management.
    5. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    6. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    7. Karima Fahem & Mohammed Radjef, 2015. "Properly efficient Nash equilibrium in multicriteria noncooperative games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 175-193, October.
    8. Peter Borm & Freek van Megen & Stef Tijs, 1999. "A perfectness concept for multicriteria games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(3), pages 401-412, July.
    9. J. B. Cruz & M. A. Simaan, 2000. "Ordinal Games and Generalized Nash and Stackelberg Solutions," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 205-222, November.
    10. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    11. M. Voorneveld, 1999. "Pareto-Optimal Security Strategies as Minimax Strategies of a Standard Matrix Game," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 203-210, July.
    12. M.S. Radjef & K. Fahem, 2008. "A note on ideal Nash equilibrium in multicriteria games," Post-Print hal-00716317, HAL.
    13. Xu, Chunhui, 2000. "Computation of noncooperative equilibria in ordinal games," European Journal of Operational Research, Elsevier, vol. 122(1), pages 115-122, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasaki, Yasuo, 2022. "Unawareness of decision criteria in multicriteria games," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 31-40.
    2. Yasuo Sasaki, 2019. "Rationalizability in multicriteria games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 673-685, June.
    3. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
    4. Karima Fahem & Mohammed Radjef, 2015. "Properly efficient Nash equilibrium in multicriteria noncooperative games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 175-193, October.
    5. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    6. Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007. "More strategies, more Nash equilibria," Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
    7. Jamal Ouenniche & Aristotelis Boukouras & Mohammad Rajabi, 2016. "An Ordinal Game Theory Approach to the Analysis and Selection of Partners in Public–Private Partnership Projects," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 314-343, April.
    8. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    9. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    10. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    11. Echenique, Federico, 2002. "Finding All Equilibria," Working Papers 1153, California Institute of Technology, Division of the Humanities and Social Sciences.
    12. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    13. Stuart McDonald & Liam Wagner, 2010. "The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing," Risk & Uncertainty Working Papers WPR10_1, Risk and Sustainable Management Group, University of Queensland, revised Apr 2010.
    14. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
    15. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
    16. Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
    17. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    18. F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Anna Rettieva, 2022. "Dynamic Multicriteria Game with Pollution Externalities," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    20. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-017-2570-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.