IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp1140-1151.html
   My bibliography  Save this article

Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries

Author

Listed:
  • Li, Jianxuan
  • Shi, Yingying
  • Cao, Guangxi

Abstract

The Belt and Road initiative has been gaining attention internationally since its proposal. This study applies complex network theory to the Belt and Road countries’ exchange rate markets by constructing a correlation network for these markets using the detrended cross-correlation coefficient (DCCA cross-correlation coefficient). Results show that the Belt and Road countries’ exchange rate network (BREN)11Hereinafter referred to as BREN.exhibits a small-world effect and robustness. The network is divided into three clusters by factional analysis. The three clusters correspond to three regions: West Asia, Central Asia and Europe, and Southeast Asia. The cohesion subgroup density between Central Asia and Europe and West Asia is high, and the inter-correlation of the Central Asia and Europe is strong. Moreover, the CNY’s position in the BREN has been significantly improved since the policy was proposed.

Suggested Citation

  • Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:1140-1151
    DOI: 10.1016/j.physa.2018.06.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307830
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    2. Gu, Rongbao & Shao, Yanmin & Wang, Qingnan, 2013. "Is the efficiency of stock market correlated with multifractality? An evidence from the Shanghai stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 361-370.
    3. Wiliński, M. & Sienkiewicz, A. & Gubiec, T. & Kutner, R. & Struzik, Z.R., 2013. "Structural and topological phase transitions on the German Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5963-5973.
    4. Shu-Peng Chen & Ling-Yun He, 2013. "Bubble Formation and Heterogeneity of Traders: A Multi-Agent Perspective," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 267-289, October.
    5. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    6. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    7. Jaroslaw Kwapien & Pawel Oswiecimka & Stanislaw Drozdz, 2015. "Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations," Papers 1506.08692, arXiv.org, revised Nov 2015.
    8. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    9. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    10. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    11. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    12. Yuan, Naiming & Fu, Zuntao, 2014. "Different spatial cross-correlation patterns of temperature records over China: A DCCA study on different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 71-79.
    13. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    14. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    15. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    16. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    17. Ferreira, Paulo & Dionísio, Andreia & Zebende, G.F., 2016. "Why does the Euro fail? The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 543-554.
    18. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    19. Ling-Yun He & Sheng Yang & Wen-Si Xie & Zhi-Hong Han, 2014. "Contemporaneous and Asymmetric Properties in the Price-Volume Relationships in China's Agricultural Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(1S), pages 148-166, January.
    20. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    21. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    22. Wen, Xing-Chun & He, Ling-Yun, 2015. "Housing demand or money supply? A new Keynesian dynamic stochastic general equilibrium model on China’s housing market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 257-268.
    23. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    24. Yingying Xing & Jian Lu & Shendi Chen, 2016. "Weighted Complex Network Analysis of Shanghai Rail Transit System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, August.
    25. Wang, Gang-Jin & Xie, Chi & He, Ling-Yun & Chen, Shou, 2014. "Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 70-79.
    26. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    27. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    28. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    29. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    30. Li Huang & Wei Wang & Minggong Wang, 2013. "Simulation Research of Space-Time Evolution of Emergency Logistics Network Reliability Based on Complex Network Theory," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, September.
    31. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    32. Zeng, Zhi-Jian & Xie, Chi & Yan, Xin-Guo & Hu, Jue & Mao, Zhou, 2016. "Are stock market networks non-fractal? Evidence from New York Stock Exchange," Finance Research Letters, Elsevier, vol. 17(C), pages 97-102.
    33. Caraiani, Petre, 2012. "Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(13), pages 3629-3637.
    34. Cao, Guangxi & Cao, Jie & Xu, Longbing & He, LingYun, 2014. "Detrended cross-correlation analysis approach for assessing asymmetric multifractal detrended cross-correlations and their application to the Chinese financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 460-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoling Zhang & Decai Tang & Brandon J. Bethel, 2021. "Analyzing the Characteristics and Evolution of Chinese Enterprises’ Outward Forward Direct Investment Host Country Network," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    2. Pengfei Xi & Shiyang Lai & Xueying Wang & Weiqiang Huang, 2020. "Using detrended deconvolution foreign exchange network to identify currency status," Papers 2008.09482, arXiv.org.
    3. Dai, Zhifeng & Zhu, Haoyang, 2022. "Time-varying spillover effects and investment strategies between WTI crude oil, natural gas and Chinese stock markets related to belt and road initiative," Energy Economics, Elsevier, vol. 108(C).
    4. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Guedes, E.F. & Brito, A.A. & Oliveira Filho, F.M. & Fernandez, B.F. & de Castro, A.P.N. & da Silva Filho, A.M. & Zebende, G.F., 2018. "Statistical test for ΔρDCCA cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 134-140.
    4. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    5. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    6. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
    7. Cao, Guangxi & Zhang, Qi & Li, Qingchen, 2017. "Causal relationship between the global foreign exchange market based on complex networks and entropy theory," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 36-44.
    8. Wang, Gang-Jin & Xie, Chi & He, Ling-Yun & Chen, Shou, 2014. "Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 70-79.
    9. Cao, Guangxi & Han, Yan & Cui, Weijun & Guo, Yu, 2014. "Multifractal detrended cross-correlations between the CSI 300 index futures and the spot markets based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 308-320.
    10. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    11. Kartikay Gupta & Niladri Chatterjee, 2020. "Examining Lead-Lag Relationships In-Depth, With Focus On FX Market As Covid-19 Crises Unfolds," Papers 2004.10560, arXiv.org, revised May 2020.
    12. Zhang, Xin & Zhu, Yingming & Yang, Liansheng, 2018. "Multifractal detrended cross-correlations between Chinese stock market and three stock markets in The Belt and Road Initiative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 105-115.
    13. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    14. Machado Filho, A. & da Silva, M.F. & Zebende, G.F., 2014. "Autocorrelation and cross-correlation in time series of homicide and attempted homicide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 12-19.
    15. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    16. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    17. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    18. repec:arx:papers:1501.02947 is not listed on IDEAS
    19. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    20. da Silva, Marcus Fernandes & Leão Pereira, Éder Johnson de Area & da Silva Filho, Aloisio Machado & Nunes de Castro, Arleys Pereira & Miranda, José Garcia Vivas & Zebende, Gilney Figueira, 2015. "Quantifying cross-correlation between Ibovespa and Brazilian blue-chips: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 124-129.
    21. Kristoufek, Ladislav, 2015. "Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 124-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:1140-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.