IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v258y2017i2d10.1007_s10479-016-2301-6.html
   My bibliography  Save this article

An MILP model for planning of batch plants operating in a campaign-mode

Author

Listed:
  • Yanina Fumero

    (INGAR - Instituto de Desarrollo y Diseño (CONICET-UTN))

  • Gabriela Corsano

    (INGAR - Instituto de Desarrollo y Diseño (CONICET-UTN))

  • Jorge M. Montagna

    (INGAR - Instituto de Desarrollo y Diseño (CONICET-UTN))

Abstract

A mixed integer linear programming (MILP) for the detailed production planning of multiproduct batch plants is presented in this work. New timing decisions are incorporated to the model taking into account that an operation mode based in campaigns is adopted. This operation mode assures a more efficient production management adjusted to the specific context conditions of the considered time horizon. In addition, special considerations as sequence-dependent changeover times and different unit sizes for parallel units in each stage are taken into account. The problem consists of determining the amount of each product to be produced, stored and sold over the given time horizon, the composition of the production campaign (number of batches and their sizes), the assignment, sequencing and timing of batches, and the number of repetitions of the campaign, for a given plant with known product recipes. The objective is to maximize the net profit fulfilling the minimum and maximum product demands. The proposed model provides a useful tool for solving the optimal campaign planning of installed facilities in reasonable computation time, taking different decisions about the operations management.

Suggested Citation

  • Yanina Fumero & Gabriela Corsano & Jorge M. Montagna, 2017. "An MILP model for planning of batch plants operating in a campaign-mode," Annals of Operations Research, Springer, vol. 258(2), pages 415-435, November.
  • Handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-016-2301-6
    DOI: 10.1007/s10479-016-2301-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2301-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2301-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bilge Bilgen & Yelda Çelebi, 2013. "Integrated production scheduling and distribution planning in dairy supply chain by hybrid modelling," Annals of Operations Research, Springer, vol. 211(1), pages 55-82, December.
    2. Songsong Liu & Jose Pinto & Lazaros Papageorgiou, 2010. "MILP-based approaches for medium-term planning of single-stage continuous multiproduct plants with parallel units," Computational Management Science, Springer, vol. 7(4), pages 407-435, October.
    3. Yanina Fumero & Gabriela Corsano & Jorge Montagna, 2012. "Planning and scheduling of multistage multiproduct batch plants operating under production campaigns," Annals of Operations Research, Springer, vol. 199(1), pages 249-268, October.
    4. Elvin Coban & J. Hooker, 2013. "Single-facility scheduling by logic-based Benders decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 245-272, November.
    5. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    2. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    3. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    4. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    5. Verbiest, Floor & Cornelissens, Trijntje & Springael, Johan, 2019. "A matheuristic approach for the design of multiproduct batch plants with parallel production lines," European Journal of Operational Research, Elsevier, vol. 273(3), pages 933-947.
    6. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    7. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    8. Jih-Jeng Huang, 2016. "Resource decision making for vertical and horizontal integration problems in an enterprise," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1363-1372, November.
    9. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    10. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    11. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    12. Parreño, Francisco & Álvarez-Valdés, Ramón & Martí, Rafael, 2021. "Measuring diversity. A review and an empirical analysis," European Journal of Operational Research, Elsevier, vol. 289(2), pages 515-532.
    13. Martina Fischetti & Michele Monaci, 2016. "Proximity search heuristics for wind farm optimal layout," Journal of Heuristics, Springer, vol. 22(4), pages 459-474, August.
    14. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    15. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "An effective two phase heuristic for synchronized seru production scheduling and 3PL transportation problems," International Journal of Production Economics, Elsevier, vol. 268(C).
    16. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    17. Sun, Xuting & Chung, Sai-Ho & Choi, Tsan-Ming & Sheu, Jiuh-Biing & Ma, Hoi Lam, 2020. "Combating lead-time uncertainty in global supply chain's shipment-assignment: Is it wise to be risk-averse?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 406-434.
    18. Bretthauer, Kurt M. & Ross, Anthony & Shetty, Bala, 1999. "Nonlinear integer programming for optimal allocation in stratified sampling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 667-680, August.
    19. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    20. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-016-2301-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.