IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v213y2014i1p147-17110.1007-s10479-012-1132-3.html
   My bibliography  Save this article

Solving an integrated job-shop problem with human resource constraints

Author

Listed:
  • Olivier Guyon
  • Pierre Lemaire
  • Éric Pinson
  • David Rivreau

Abstract

We propose two exact methods to solve an integrated employee-timetable and job-shop-scheduling problem. The problem is to find a minimum cost employee-timetable, where employees have different competences and work during shifts, so that the production, that corresponds to a job-shop with resource availability constraints, can be achieved. We introduce two new exact procedures: (1) a decomposition and cut generation approach and (2) a hybridization of a cut generation process with a branch and bound strategy. We also propose initial cuts that strongly improve these methods as well as a standard MIP approach. The computational performances of those methods on benchmark instances are compared to that of other methods from the literature. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Olivier Guyon & Pierre Lemaire & Éric Pinson & David Rivreau, 2014. "Solving an integrated job-shop problem with human resource constraints," Annals of Operations Research, Springer, vol. 213(1), pages 147-171, February.
  • Handle: RePEc:spr:annopr:v:213:y:2014:i:1:p:147-171:10.1007/s10479-012-1132-3
    DOI: 10.1007/s10479-012-1132-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1132-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1132-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Daniels & Joseph B. Mazzola, 1994. "Flow Shop Scheduling with Resource Flexibility," Operations Research, INFORMS, vol. 42(3), pages 504-522, June.
    2. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    3. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    4. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    5. Guoqing Wang & Hongyi Sun & Chengbin Chu, 2005. "Preemptive Scheduling with Availability Constraints to Minimize Total Weighted Completion Times," Annals of Operations Research, Springer, vol. 133(1), pages 183-192, January.
    6. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    7. Aggoune, Riad, 2004. "Minimizing the makespan for the flow shop scheduling problem with availability constraints," European Journal of Operational Research, Elsevier, vol. 153(3), pages 534-543, March.
    8. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    9. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    10. Blazewicz, J. & Finke, G. & Haupt, R. & Schmidt, G., 1988. "New trends in machine scheduling," European Journal of Operational Research, Elsevier, vol. 37(3), pages 303-317, December.
    11. Carlier, J. & Pinson, E., 1994. "Adjustment of heads and tails for the job-shop problem," European Journal of Operational Research, Elsevier, vol. 78(2), pages 146-161, October.
    12. Guyon, O. & Lemaire, P. & Pinson, É. & Rivreau, D., 2010. "Cut generation for an integrated employee timetabling and production scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 557-567, March.
    13. Zhi-Long Chen, 2004. "Simultaneous Job Scheduling and Resource Allocation on Parallel Machines," Annals of Operations Research, Springer, vol. 129(1), pages 135-153, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    2. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    3. Miloš Milenković & Susana Val & Nebojša Bojović, 2023. "Simultaneous lot sizing and scheduling in the animal feed premix industry," Operational Research, Springer, vol. 23(2), pages 1-40, June.
    4. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    2. Pan, Yunpeng & Shi, Leyuan, 2006. "Branch-and-bound algorithms for solving hard instances of the one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1030-1039, February.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    6. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    7. Sheen, Gwo-Ji & Liao, Lu-Wen, 2007. "A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 181(1), pages 102-116, August.
    8. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    9. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    10. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    11. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    12. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    13. Peridy, Laurent & Rivreau, David, 2005. "Local adjustments: A general algorithm," European Journal of Operational Research, Elsevier, vol. 164(1), pages 24-38, July.
    14. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    15. Kacem, Imed & Chu, Chengbin, 2008. "Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint," International Journal of Production Economics, Elsevier, vol. 112(1), pages 138-150, March.
    16. Carlier, Jacques & Rebai, Ismail, 1996. "Two branch and bound algorithms for the permutation flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 238-251, April.
    17. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    18. Gueret, Christelle & Jussien, Narendra & Prins, Christian, 2000. "Using intelligent backtracking to improve branch-and-bound methods: An application to Open-Shop problems," European Journal of Operational Research, Elsevier, vol. 127(2), pages 344-354, December.
    19. Carlier, J. & Pinson, E. & Sahli, A. & Jouglet, A., 2020. "An O(n2) algorithm for time-bound adjustments for the cumulative scheduling problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 468-476.
    20. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:213:y:2014:i:1:p:147-171:10.1007/s10479-012-1132-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.