IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v192y2012i1p3-1910.1007-s10479-010-0797-8.html
   My bibliography  Save this article

LASSO-based multivariate linear profile monitoring

Author

Listed:
  • Changliang Zou
  • Xianghui Ning
  • Fugee Tsung

Abstract

In many applications of manufacturing and service industries, the quality of a process is characterized by the functional relationship between a response variable and one or more explanatory variables. Profile monitoring is for checking the stability of this relationship over time. In some situations, multiple profiles are required in order to model the quality of a product or process effectively. General multivariate linear profile monitoring is particularly useful in practice due to its simplicity and flexibility. However, in such situations, the existing parametric profile monitoring methods suffer from a drawback in that when the profile parameter dimensionality is large, the detection ability of the procedures commonly used T 2 -type charting statistics is likely to decline substantially. Moreover, it is also challenging to isolate the type of profile parameter change in such high-dimensional circumstances. These issues actually inherit from those of the conventional multivariate control charts. To resolve these issues, this paper develops a new methodology for monitoring general multivariate linear profiles, including the regression coefficients and profile variation. After examining the connection between the parametric profile monitoring and multivariate statistical process control, we propose to apply a variable-selection-based multivariate control scheme to the transformations of estimated profile parameters. Our proposed control chart is capable of determining the shift direction automatically based on observed profile data. Thus, it offers a balanced protection against various profile shifts. Moreover, the proposed control chart provides an easy but quite effective diagnostic aid. A real-data example from the logistics service shows that it performs quite well in the application. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Changliang Zou & Xianghui Ning & Fugee Tsung, 2012. "LASSO-based multivariate linear profile monitoring," Annals of Operations Research, Springer, vol. 192(1), pages 3-19, January.
  • Handle: RePEc:spr:annopr:v:192:y:2012:i:1:p:3-19:10.1007/s10479-010-0797-8
    DOI: 10.1007/s10479-010-0797-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0797-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0797-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Zou, Changliang & Qiu, Peihua, 2009. "Multivariate Statistical Process Control Using LASSO," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1586-1596.
    3. Ming Yuan & Ali Ekici & Zhaosong Lu & Renato Monteiro, 2007. "Dimension reduction and coefficient estimation in multivariate linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 329-346, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ching-Hsin Wang & Feng-Chia Li, 2020. "Economic design under gamma shock model of the control chart for sustainable operations," Annals of Operations Research, Springer, vol. 290(1), pages 169-190, July.
    2. Shuguang He & Wei Jiang & Houtao Deng, 2018. "A distance-based control chart for monitoring multivariate processes using support vector machines," Annals of Operations Research, Springer, vol. 263(1), pages 191-207, April.
    3. George Chalamandaris & Nikos E. Vlachogiannakis, 2018. "Are financial ratios relevant for trading credit risk? Evidence from the CDS market," Annals of Operations Research, Springer, vol. 266(1), pages 395-440, July.
    4. Yu-min Liu & Li Xue, 2015. "The optimization design of EWMA charts for monitoring environmental performance," Annals of Operations Research, Springer, vol. 228(1), pages 113-124, May.
    5. Wenhui Liu & Zhonghua Li & Zhaojun Wang, 2022. "Monitoring of Linear Profiles Using Linear Mixed Model in the Presence of Measurement Errors," Mathematics, MDPI, vol. 10(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    3. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    4. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    5. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    6. Kohei Yoshikawa & Shuichi Kawano, 2023. "Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization," Computational Statistics, Springer, vol. 38(1), pages 53-75, March.
    7. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    8. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    9. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    10. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    11. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    12. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    13. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    14. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    15. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    17. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    18. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    20. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:192:y:2012:i:1:p:3-19:10.1007/s10479-010-0797-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.