IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v189y2011i1p5-2310.1007-s10479-009-0658-5.html
   My bibliography  Save this article

Efficient simulation of tail probabilities of sums of correlated lognormals

Author

Listed:
  • Søren Asmussen
  • José Blanchet
  • Sandeep Juneja
  • Leonardo Rojas-Nandayapa

Abstract

We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown to be efficient as the tail probability of interest decreases to zero. The first estimator, based on importance sampling, involves a scaling of the whole covariance matrix and can be shown to be asymptotically optimal. A further study, based on the Cross-Entropy algorithm, is also performed in order to adaptively optimize the scaling parameter of the covariance. The second estimator decomposes the probability of interest in two contributions and takes advantage of the fact that large deviations for a sum of correlated lognormals are (asymptotically) caused by the largest increment. Importance sampling is then applied to each of these contributions to obtain a combined estimator with asymptotically vanishing relative error. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Søren Asmussen & José Blanchet & Sandeep Juneja & Leonardo Rojas-Nandayapa, 2011. "Efficient simulation of tail probabilities of sums of correlated lognormals," Annals of Operations Research, Springer, vol. 189(1), pages 5-23, September.
  • Handle: RePEc:spr:annopr:v:189:y:2011:i:1:p:5-23:10.1007/s10479-009-0658-5
    DOI: 10.1007/s10479-009-0658-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0658-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0658-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmussen, Søren & Rojas-Nandayapa, Leonardo, 2008. "Asymptotics of sums of lognormal random variables with Gaussian copula," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2709-2714, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
    2. Nikola Gradojevic, 2021. "Brexit and foreign exchange market expectations: Could it have been predicted?," Annals of Operations Research, Springer, vol. 297(1), pages 167-189, February.
    3. Alouini Mohamed-Slim & Ben Rached Nadhir & Kammoun Abla & Tempone Raul, 2018. "On the efficient simulation of the left-tail of the sum of correlated log-normal variates," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 101-115, June.
    4. Jose Blanchet & Juan Li & Marvin K. Nakayama, 2019. "Rare-Event Simulation for Distribution Networks," Operations Research, INFORMS, vol. 67(5), pages 1383-1396, September.
    5. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    6. Dominik Kortschak & Enkelejd Hashorva, 2014. "Second Order Asymptotics of Aggregated Log-Elliptical Risk," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 969-985, December.
    7. Hélène Cossette & Etienne Marceau & Quang Huy Nguyen & Christian Y. Robert, 2019. "Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 461-490, June.
    8. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    9. Archil Gulisashvili & Peter Tankov, 2013. "Tail behavior of sums and differences of log-normal random variables," Papers 1309.3057, arXiv.org, revised Jan 2016.
    10. Kemal Dinçer Dingeç & Wolfgang Hörmann, 2022. "Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2093-2121, September.
    11. Søren Asmussen & Jens Ledet Jensen & Leonardo Rojas-Nandayapa, 2016. "Exponential Family Techniques for the Lognormal Left Tail," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 774-787, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoou Li & Jingchen Liu & Gongjun Xu, 2016. "On the Tail Probabilities of Aggregated Lognormal Random Fields with Small Noise," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 236-246, February.
    2. Dan Pirjol & Lingjiong Zhu, 2016. "Discrete Sums of Geometric Brownian Motions, Annuities and Asian Options," Papers 1609.07558, arXiv.org.
    3. Boyle, Phelim & Jiang, Ruihong, 2023. "A note on portfolios of averages of lognormal variables," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 97-109.
    4. Peter Tankov, 2014. "Tails of weakly dependent random vectors," Papers 1402.4683, arXiv.org, revised Jan 2016.
    5. Jaap Geluk & Qihe Tang, 2009. "Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables," Journal of Theoretical Probability, Springer, vol. 22(4), pages 871-882, December.
    6. Jiang, Tao & Gao, Qingwu & Wang, Yuebao, 2014. "Max-sum equivalence of conditionally dependent random variables," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 60-66.
    7. Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
    8. Jo, Wooseok & Lee, Seung Jun, 2024. "Human reliability evaluation method covering operator action timing for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Fulghieri, Paolo & Hackbarth, Dirk & Garcia, Diego, 2015. "Asymmetric information, security design, and the pecking (dis)order," CEPR Discussion Papers 10660, C.E.P.R. Discussion Papers.
    10. Alouini Mohamed-Slim & Ben Rached Nadhir & Kammoun Abla & Tempone Raul, 2018. "On the efficient simulation of the left-tail of the sum of correlated log-normal variates," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 101-115, June.
    11. Pirjol, Dan & Zhu, Lingjiong, 2016. "Discrete sums of geometric Brownian motions, annuities and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 19-37.
    12. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    13. Archil Gulisashvili & Peter Tankov, 2013. "Tail behavior of sums and differences of log-normal random variables," Papers 1309.3057, arXiv.org, revised Jan 2016.
    14. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    15. Coqueret, Guillaume, 2014. "Second order risk aggregation with the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 150-158.
    16. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    17. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    18. Denys Pommeret & Laurence Reboul, 2019. "Approximating the Probability Density Function of a Transformation of Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 633-645, June.
    19. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
    20. Jochen Ranger & Christoph König & Benjamin W. Domingue & Jörg-Tobias Kuhn & Andreas Frey, 2024. "A Multidimensional Partially Compensatory Response Time Model on Basis of the Log-Normal Distribution," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 431-464, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:189:y:2011:i:1:p:5-23:10.1007/s10479-009-0658-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.