IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09899-x.html
   My bibliography  Save this article

Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums

Author

Listed:
  • Kemal Dinçer Dingeç

    (Gebze Technical University)

  • Wolfgang Hörmann

    (Boğaziçi University)

Abstract

For the estimation of left and right-tail probabilities and the pdf of the sum of exchangeable lognormal random vectors a new conditional Monte Carlo (CMC) algorithm is developed. It removes the randomness of the sum of all input variables and is simple and fast. For estimating the left-tail probabilities the CMC algorithm is logarithmically efficient. A further improvement of the algorithm by removing also the randomness of the radius of the normal input using close to optimal one dimensional importance sampling, results in the CMC.RCMC algorithm. For the sum of independent and identically distributed (i.i.d. ) and exchangeable lognormal vectors it is the first algorithm that has bounded relative error for the left-tail probabilities. The CMC.RCMC algorithm is logarithmically efficient for the right-tail probabilities. Numerical experiments verify that it has a very good performance for all left-tail estimation problems and a good performance for the right tail for probabilities not smaller than $$10^{-10}$$ 10 - 10 . When estimating the pdf the relative errors observed are all very close to those of the corresponding probability estimates.

Suggested Citation

  • Kemal Dinçer Dingeç & Wolfgang Hörmann, 2022. "Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2093-2121, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09899-x
    DOI: 10.1007/s11009-021-09899-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09899-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09899-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Søren Asmussen & Jens Ledet Jensen & Leonardo Rojas-Nandayapa, 2016. "Exponential Family Techniques for the Lognormal Left Tail," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 774-787, September.
    2. Asmussen, Søren, 2018. "Conditional Monte Carlo for sums, with applications to insurance and finance," Annals of Actuarial Science, Cambridge University Press, vol. 12(2), pages 455-478, September.
    3. Archil Gulisashvili & Peter Tankov, 2013. "Tail behavior of sums and differences of log-normal random variables," Papers 1309.3057, arXiv.org, revised Jan 2016.
    4. Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
    5. Søren Asmussen & José Blanchet & Sandeep Juneja & Leonardo Rojas-Nandayapa, 2011. "Efficient simulation of tail probabilities of sums of correlated lognormals," Annals of Operations Research, Springer, vol. 189(1), pages 5-23, September.
    6. Sak, Halis & Hörmann, Wolfgang & Leydold, Josef, 2010. "Efficient risk simulations for linear asset portfolios in the t-copula model," European Journal of Operational Research, Elsevier, vol. 202(3), pages 802-809, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
    2. Boyle, Phelim & Jiang, Ruihong, 2023. "A note on portfolios of averages of lognormal variables," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 97-109.
    3. Alouini Mohamed-Slim & Ben Rached Nadhir & Kammoun Abla & Tempone Raul, 2018. "On the efficient simulation of the left-tail of the sum of correlated log-normal variates," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 101-115, June.
    4. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    5. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    6. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    7. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    8. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    9. Chakrabarty, Arijit & Samorodnitsky, Gennady, 2018. "Asymptotic behaviour of high Gaussian minima," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2297-2324.
    10. Laih, Yih-Wenn, 2014. "Measuring rank correlation coefficients between financial time series: A GARCH-copula based sequence alignment algorithm," European Journal of Operational Research, Elsevier, vol. 232(2), pages 375-382.
    11. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    12. Dan Pirjol & Lingjiong Zhu, 2016. "Discrete Sums of Geometric Brownian Motions, Annuities and Asian Options," Papers 1609.07558, arXiv.org.
    13. Robert Parham, 2023. "The Difference-of-Log-Normals Distribution: Properties, Estimation, and Growth," Papers 2302.02486, arXiv.org.
    14. David Alaminos & M. Belén Salas & Manuel Á. Fernández-Gámez, 2023. "Quantum Monte Carlo simulations for estimating FOREX markets: a speculative attacks experience," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-21, December.
    15. D’Amico, Guglielmo & Petroni, Filippo, 2018. "Copula based multivariate semi-Markov models with applications in high-frequency finance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 765-777.
    16. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    17. Peter Tankov, 2014. "Tails of weakly dependent random vectors," Papers 1402.4683, arXiv.org, revised Jan 2016.
    18. Hörmann, Wolfgang & Sak, Halis, 2010. "t-Copula generation for control variates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 782-790.
    19. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    20. Hélène Cossette & Etienne Marceau & Quang Huy Nguyen & Christian Y. Robert, 2019. "Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 461-490, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09899-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.