IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v175y2010i1p77-10510.1007-s10479-009-0656-7.html
   My bibliography  Save this article

Ejection chain and filter-and-fan methods in combinatorial optimization

Author

Listed:
  • César Rego
  • Fred Glover

Abstract

The design of effective neighborhood structures is fundamentally important for creating better local search and metaheuristic algorithms for combinatorial optimization. Significant efforts have been made to develop larger and more powerful neighborhoods that are able to explore the solution space more effectively while keeping computation complexity within acceptable levels. The most important advances in this domain derive from dynamic and adaptive neighborhood constructions originating in ejection chain methods and a special form of a candidate list design that constitutes the core of the filter-and-fan method. The objective of this paper is to lay out the general framework of the ejection chain and filter-and-fan methods and present applications to a number of important combinatorial optimization problems. The features of the methods that make them effective in these applications are highlighted to provide insights into solving challenging problems in other settings. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
  • Handle: RePEc:spr:annopr:v:175:y:2010:i:1:p:77-105:10.1007/s10479-009-0656-7
    DOI: 10.1007/s10479-009-0656-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0656-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0656-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buyang Cao & Fred Glover, 1997. "Tabu Search and Ejection Chains---Application to a Node Weighted Version of the Cardinality-Constrained TSP," Management Science, INFORMS, vol. 43(7), pages 908-921, July.
    2. Rego, Cesar, 1998. "Relaxed tours and path ejections for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 522-538, April.
    3. L Cavique & C Rego & I Themido, 1999. "Subgraph ejection chains and tabu search for the crew scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(6), pages 608-616, June.
    4. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    5. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    6. Marshall L. Fisher, 1994. "Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees," Operations Research, INFORMS, vol. 42(4), pages 626-642, August.
    7. David Applegate & William Cook & André Rohe, 2003. "Chained Lin-Kernighan for Large Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 82-92, February.
    8. Gamboa, Dorabela & Rego, Cesar & Glover, Fred, 2005. "Data structures and ejection chains for solving large-scale traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 160(1), pages 154-171, January.
    9. Sabuncuoglu, I. & Bayiz, M., 1999. "Job shop scheduling with beam search," European Journal of Operational Research, Elsevier, vol. 118(2), pages 390-412, October.
    10. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    11. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    12. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    13. Ravindra K. Ahuja & Krishna C. Jha & James B. Orlin & Dushyant Sharma, 2007. "Very Large-Scale Neighborhood Search for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 646-657, November.
    14. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    15. Ulrich Dorndorf & Erwin Pesch, 1994. "Fast Clustering Algorithms," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 141-153, May.
    16. Gao, Li-Lian & Robinson, E. Powell, 1994. "Uncapacitated facility location: General solution procedure and computational experience," European Journal of Operational Research, Elsevier, vol. 76(3), pages 410-427, August.
    17. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    18. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    19. E. H. L. Aarts & P. J. M. van Laarhoven & J. K. Lenstra & N. L. J. Ulder, 1994. "A Computational Study of Local Search Algorithms for Job Shop Scheduling," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 118-125, May.
    20. Paris-C. Kanellakis & Christos H. Papadimitriou, 1980. "Local Search for the Asymmetric Traveling Salesman Problem," Operations Research, INFORMS, vol. 28(5), pages 1086-1099, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kress, Dominik & Meiswinkel, Sebastian & Pesch, Erwin, 2019. "Straddle carrier routing at seaport container terminals in the presence of short term quay crane buffer areas," European Journal of Operational Research, Elsevier, vol. 279(3), pages 732-750.
    2. Tarantilis, C.D. & Stavropoulou, F. & Repoussis, P.P., 2013. "The Capacitated Team Orienteering Problem: A Bi-level Filter-and-Fan method," European Journal of Operational Research, Elsevier, vol. 224(1), pages 65-78.
    3. Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
    4. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    5. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    2. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    3. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    4. Colin Osterman & César Rego, 2016. "A k-level data structure for large-scale traveling salesman problems," Annals of Operations Research, Springer, vol. 244(2), pages 583-601, September.
    5. Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
    6. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    7. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    8. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    9. Goncalves, Jose Fernando & de Magalhaes Mendes, Jorge Jose & Resende, Mauricio G. C., 2005. "A hybrid genetic algorithm for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 167(1), pages 77-95, November.
    10. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    11. Chen, Yu-Wang & Zhu, Yao-Jia & Yang, Gen-Ke & Lu, Yong-Zai, 2011. "Improved extremal optimization for the asymmetric traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4459-4465.
    12. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    13. Elena Nechita & Gloria Cerasela Crişan & Laszlo Barna Iantovics & Yitong Huang, 2020. "On the Resilience of Ant Algorithms. Experiment with Adapted MMAS on TSP," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    14. K Sang-Ho & G Young-Gun & K Maing-Kyu, 2003. "Application of the out-of-kilter algorithm to the asymmetric traveling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1085-1092, October.
    15. P M E Shutler, 2003. "A priority list based heuristic for the job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 571-584, June.
    16. William Cook & Paul Seymour, 2003. "Tour Merging via Branch-Decomposition," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 233-248, August.
    17. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    18. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    19. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    20. TALARICO, Luca & SÖRENSEN, Kenneth & SPRINGAEL, Johan, 2013. "The k-dissimilar vehicle routing problem," Working Papers 2013029, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:175:y:2010:i:1:p:77-105:10.1007/s10479-009-0656-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.