IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p752-d355770.html
   My bibliography  Save this article

On the Resilience of Ant Algorithms. Experiment with Adapted MMAS on TSP

Author

Listed:
  • Elena Nechita

    (Department of Mathematics and Informatics, Vasile Alecsandri University of Bacău, 600115 Bacău, Romania)

  • Gloria Cerasela Crişan

    (Department of Mathematics and Informatics, Vasile Alecsandri University of Bacău, 600115 Bacău, Romania)

  • Laszlo Barna Iantovics

    (Department of Electrical Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540139 Târgu Mureş, Romania)

  • Yitong Huang

    (Computer Science Department, Illinois Institute of Technology, Chicago, IL 60616, USA)

Abstract

This paper focuses on the resilience of a nature-inspired class of algorithms. The issues related to resilience fall under a very wide umbrella. The uncertainties that we face in the world require the need of resilient systems in all domains. Software resilience is certainly of critical importance, due to the presence of software applications which are embedded in numerous operational and strategic systems. For Ant Colony Optimization (ACO), one of the most successful heuristic methods inspired by the communication processes in entomology, performance and convergence issues have been intensively studied by the scientific community. Our approach addresses the resilience of MAX–MIN Ant System (MMAS), one of the most efficient ACO algorithms, when studied in relation with Traveling Salesman Problem (TSP). We introduce a set of parameters that allow the management of real-life situations, such as imprecise or missing data and disturbances in the regular computing process. Several metrics are involved, and a statistical analysis is performed. The resilience of the adapted MMAS is analyzed and discussed. A broad outline on future research directions is given in connection with new trends concerning the design of resilient systems.

Suggested Citation

  • Elena Nechita & Gloria Cerasela Crişan & Laszlo Barna Iantovics & Yitong Huang, 2020. "On the Resilience of Ant Algorithms. Experiment with Adapted MMAS on TSP," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:752-:d:355770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Applegate & William Cook & André Rohe, 2003. "Chained Lin-Kernighan for Large Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 82-92, February.
    2. Gamboa, Dorabela & Rego, Cesar & Glover, Fred, 2005. "Data structures and ejection chains for solving large-scale traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 160(1), pages 154-171, January.
    3. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    4. S Rojanasoonthon & J F Bard & S D Reddy, 2003. "Algorithms for parallel machine scheduling: a case study of the tracking and data relay satellite system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 806-821, August.
    5. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    6. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    2. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    3. repec:jss:jstsof:23:i02 is not listed on IDEAS
    4. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    5. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    6. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    7. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    8. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.
    9. Andrzej Jaszkiewicz & Thibaut Lust, 2017. "Proper balance between search towards and along Pareto front: biobjective TSP case study," Annals of Operations Research, Springer, vol. 254(1), pages 111-130, July.
    10. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Taillard, Éric D. & Helsgaun, Keld, 2019. "POPMUSIC for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 420-429.
    12. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    13. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    14. Colin Osterman & César Rego, 2016. "A k-level data structure for large-scale traveling salesman problems," Annals of Operations Research, Springer, vol. 244(2), pages 583-601, September.
    15. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
    16. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    17. Tsubakitani, Shigeru & Evans, James R., 1998. "An empirical study of a new metaheuristic for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 113-128, January.
    18. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    19. Sebastian Herrmann & Gabriela Ochoa & Franz Rothlauf, 2016. "Communities of Local Optima as Funnels in Fitness Landscapes," Working Papers 1609, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Julia Rieck & Jürgen Zimmermann & Matthias Glagow, 2007. "Tourenplanung mittelständischer Speditionsunternehmen in Stückgutkooperationen: Modellierung und heuristische Lösungsverfahren," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 17(4), pages 365-388, January.
    21. Çavdar, Bahar & Sokol, Joel, 2015. "TSP Race: Minimizing completion time in time-sensitive applications," European Journal of Operational Research, Elsevier, vol. 244(1), pages 47-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:752-:d:355770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.