IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v144y2006i1p329-36210.1007-s10479-006-0007-x.html
   My bibliography  Save this article

Approximation of the steepest descent direction for the O-D matrix adjustment problem

Author

Listed:
  • Esteve Codina
  • Lídia Montero

Abstract

In this paper, a method to approximate the directions of Clarke's generalized gradient of the upper level function for the demand adjustment problem on traffic networks is presented. Its consistency is analyzed in detail. The theoretical background on which this method relies is the known property of proximal subgradients of approximating subgradients of proximal bounded and lower semicountinuous functions using the Moreau envelopes. A double penalty approach is employed to approximate the proximal subgradients provided by these envelopes. An algorithm based on partial linearization is used to solve the resulting nonconvex problem that approximates the Moreau envelopes, and a method to verify the accuracy of the approximation to the steepest descent direction at points of differentiability is developed, so it may be used as a suitable stopping criterion. Finally, a set of experiments with test problems are presented, illustrating the approximation of the solutions to a steepest descent direction evaluated numerically. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Esteve Codina & Lídia Montero, 2006. "Approximation of the steepest descent direction for the O-D matrix adjustment problem," Annals of Operations Research, Springer, vol. 144(1), pages 329-362, April.
  • Handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:329-362:10.1007/s10479-006-0007-x
    DOI: 10.1007/s10479-006-0007-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0007-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0007-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathan H. Gartner, 1980. "Optimal Traffic Assignment with Elastic Demands: A Review Part II. Algorithmic Approaches," Transportation Science, INFORMS, vol. 14(2), pages 192-208, May.
    2. Spiess, Heinz, 1987. "A maximum likelihood model for estimating origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 21(5), pages 395-412, October.
    3. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    4. Nathan H. Gartner, 1980. "Optimal Traffic Assignment with Elastic Demands: A Review Part I. Analysis Framework," Transportation Science, INFORMS, vol. 14(2), pages 174-191, May.
    5. Yuping Qiu & Thomas L. Magnanti, 1989. "Sensitivity Analysis for Variational Inequalities Defined on Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 14(3), pages 410-432, August.
    6. Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
    7. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garcia-Rodenas, Ricardo & Verastegui-Rayo, Doroteo, 2008. "A column generation algorithm for the estimation of origin-destination matrices in congested traffic networks," European Journal of Operational Research, Elsevier, vol. 184(3), pages 860-878, February.
    2. S. Dempe & A. Zemkoho, 2012. "Bilevel road pricing: theoretical analysis and optimality conditions," Annals of Operations Research, Springer, vol. 196(1), pages 223-240, July.
    3. Walpen, Jorgelina & Mancinelli, Elina M. & Lotito, Pablo A., 2015. "A heuristic for the OD matrix adjustment problem in a congested transport network," European Journal of Operational Research, Elsevier, vol. 242(3), pages 807-819.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Travis Waller & Sai Chand & Aleksa Zlojutro & Divya Nair & Chence Niu & Jason Wang & Xiang Zhang & Vinayak V. Dixit, 2021. "Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    2. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    3. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    4. Codina, Esteve & Barcelo, Jaume, 2004. "Adjustment of O-D trip matrices from observed volumes: An algorithmic approach based on conjugate directions," European Journal of Operational Research, Elsevier, vol. 155(3), pages 535-557, June.
    5. Guo, Jianhua & Liu, Yu & Li, Xiugang & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "Enhanced least square based dynamic OD matrix estimation using Radio Frequency Identification data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 27-40.
    6. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    7. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    8. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    9. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    10. Michel Bierlaire & Frank Crittin, 2006. "Solving Noisy, Large-Scale Fixed-Point Problems and Systems of Nonlinear Equations," Transportation Science, INFORMS, vol. 40(1), pages 44-63, February.
    11. Walpen, Jorgelina & Mancinelli, Elina M. & Lotito, Pablo A., 2015. "A heuristic for the OD matrix adjustment problem in a congested transport network," European Journal of Operational Research, Elsevier, vol. 242(3), pages 807-819.
    12. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    13. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    14. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    15. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    16. Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
    17. Z. Wu & W. Lam, 2006. "Transit passenger origin-destination estimation in congested transit networks with elastic line frequencies," Annals of Operations Research, Springer, vol. 144(1), pages 363-378, April.
    18. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    19. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    20. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:329-362:10.1007/s10479-006-0007-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.