IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v14y1980i2p192-208.html
   My bibliography  Save this article

Optimal Traffic Assignment with Elastic Demands: A Review Part II. Algorithmic Approaches

Author

Listed:
  • Nathan H. Gartner

    (University of Lowell, Lowell, Massachusetts, and Massachusetts Institute of Technology, Cambridge, Massachusetts)

Abstract

Part I of this study reviewed the formulation of the traffic assignment problem (TAP) in a network and identified its underlying rationale. This part examines algorithmic approaches for calculating the flow patterns resulting from the different modes of assignment. An efficient methodology for solving the elastic-demand TAP is based on remodeling it as an equivalent assignment problem in an expanded network. The variable-demand TAP is then tranformed into a fixed-demand TAP, with a trip table consisting of the potential demands, and can be solved by available fixed-demand assignment algorithms. Three alternative transformations are described.

Suggested Citation

  • Nathan H. Gartner, 1980. "Optimal Traffic Assignment with Elastic Demands: A Review Part II. Algorithmic Approaches," Transportation Science, INFORMS, vol. 14(2), pages 192-208, May.
  • Handle: RePEc:inm:ortrsc:v:14:y:1980:i:2:p:192-208
    DOI: 10.1287/trsc.14.2.192
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.14.2.192
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.14.2.192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    2. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    3. Esteve Codina & Lídia Montero, 2006. "Approximation of the steepest descent direction for the O-D matrix adjustment problem," Annals of Operations Research, Springer, vol. 144(1), pages 329-362, April.
    4. Codina, Esteve & Garcia, Ricardo & Marin, Angel, 2006. "New algorithmic alternatives for the O-D matrix adjustment problem on traffic networks," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1484-1500, December.
    5. Chen, Anthony & Choi, Keechoo, 2017. "Solving the combined modal split and traffic assignment problem with two types of transit impedance functionAuthor-Name: Ryu, Seungkyu," European Journal of Operational Research, Elsevier, vol. 257(3), pages 870-880.
    6. Prateek Bansal & Rohan Shah & Stephen D. Boyles, 2018. "Robust network pricing and system optimization under combined long-term stochasticity and elasticity of travel demand," Transportation, Springer, vol. 45(5), pages 1389-1418, September.
    7. Thomas J.T. Van der Wardt & Amro M. Farid, 2017. "A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification," Energies, MDPI, vol. 10(5), pages 1-25, May.
    8. Frédéric Babonneau & Jean-Philippe Vial, 2008. "An Efficient Method to Compute Traffic Assignment Problems with Elastic Demands," Transportation Science, INFORMS, vol. 42(2), pages 249-260, May.
    9. Joakim Ekström & Leonid Engelson & Clas Rydergren, 2009. "Heuristic algorithms for a second-best congestion pricing problem," Netnomics, Springer, vol. 10(1), pages 85-102, April.
    10. Penchina, Claude M., 2004. "Minimal-revenue congestion pricing: some more good-news and bad-news," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 559-570, July.
    11. Xu, Zhandong & Chen, Anthony & Li, Guoyuan & Li, Zhengyang & Liu, Xiaobo, 2024. "Elastic-demand bi-criteria traffic assignment under the continuously distributed value of time: A two-stage gradient projection algorithm with graphical interpretations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    12. Aalami, Soheila & Kattan, Lina, 2022. "Proportionally fair flow markets for transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 24-41.
    13. Larsson, Torbjörn & Patriksson, Michael & Rydergren, Clas, 2004. "A column generation procedure for the side constrained traffic equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 17-38, January.
    14. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Optimal selection of build–operate-transfer projects on transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1699-1709.
    15. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    16. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    17. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    18. Zhang, H. M. & Ge, Y. E., 2004. "Modeling variable demand equilibrium under second-best road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 733-749, September.
    19. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:14:y:1980:i:2:p:192-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.